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Abstract People often indicate a higher price for an object
when they own it (i.e., as sellers) than when they do not (i.e.,
as buyers)—a phenomenon known as the endowment effect.
We develop a cognitive modeling approach to formalize, dis-
entangle, and compare alternative psychological accounts
(e.g., loss aversion, loss attention, strategic misrepresentation)
of such buyer-seller differences in pricing decisions of mone-
tary lotteries. To also be able to test possible buyer-seller dif-
ferences in memory and learning, we study pricing decisions
from experience, obtained with the sampling paradigm, where
people learn about a lottery’s payoff distribution from sequen-
tial sampling. We first formalize different accounts as models
within three computational frameworks (reinforcement learn-
ing, instance-based learning theory, and cumulative prospect
theory), and then fit the models to empirical selling and
buying prices. In Study 1 (a reanalysis of published data with
hypothetical decisions), models assuming buyer-seller
differences in response bias (implementing a strategic-
misrepresentation account) performed best; models assuming
buyer-seller differences in choice sensitivity or memory
(implementing a loss-attention account) generally fared worst.
In a new experiment involving incentivized decisions (Study
2), models assuming buyer-seller differences in both outcome
sensitivity (as proposed by a loss-aversion account) and
response bias performed best. In both Study 1 and 2, the
models implemented in cumulative prospect theory performed

best. Model recovery studies validated our cognitivemodeling
approach, showing that the models can be distinguished rather
well. In summary, our analysis supports a loss-aversion
account of the endowment effect, but also reveals a substantial
contribution of simple response bias.
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The minimum price at which people are willing to accept to
sell an object they own is often higher than the maximum price
they are willing to pay for the same object when they do not
own it. This systematic difference between buying and selling
prices—which can also occur within the same person when
taking different perspectives—is known as the endowment
effect (Kahneman, Knetsch, & Thaler, 1990, 1991; Thaler,
1980; see also Birnbaum & Stegner, 1979). The endowment
effect has attracted considerable attention because it contra-
dicts a central tenet of economic theory: According to the
Coase theorem, the value of an object should be independent
of its initial ownership (Kahneman et al., 1990).

There have been several proposals as to which cognitive
mechanisms give rise to the endowment effect, or how buyers’
and sellers’ cognitive mechanisms might differ generally.1 For
instance, there may be asymmetries between buyers and
sellers in terms of the order in which they search for positive

1 Note that this issue is orthogonal to the question of which aspects of being
endowed—such as ownership, expectations, or attachment to the object—
influence the size or the existence of the endowment effect (e.g.,
Morewedge, Shu, Gilbert, & Wilson, 2009; Strahilevitz & Loewenstein,
1998; for an overview, see Ericson & Fuster, 2014). As elaborated in the
General Discussion, the cognitive modeling approach proposed here comple-
ments this work, hinting at the possible cognitive mechanisms mediating the
impact of these aspects.
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and negative aspects of an object (e.g., G. J. Johnson &
Busemeyer, 2005; E. J. Johnson, Häubl, & Keinan, 2007;
Pachur & Scheibehenne, 2012; see also Morewedge &
Giblin, 2015). Most proposals, however, have focused on po-
tential buyer–seller differences in how the information ac-
quired is subsequently processed. The arguably most promi-
nent account of this type is loss aversion (Kahneman et al.,
1990), which posits that buyers and sellers differ in their sen-
sitivity to the magnitude of an object’s potential consequences
(see below for details). Further, there is evidence in valuations
of risky options that buyers and sellers differ in probability
weighting (e.g., Brenner, Griffin, & Koehler, 2012), and some
authors have highlighted the role of strategic misrepresenta-
tion (e.g., Heifetz & Segev, 2004; Isoni, Loomes, & Sugden,
2011; Plott & Zeiler, 2005, 2007). Finally, Yechiam and
Hochman (2013a) have recently proposed a loss-attention ac-
count, according to which buyers and sellers may differ in the
amount of attention they invest in a task. The latter suggests
that there might also be buyer–seller differences in learning
and memory, which could explain why selling prices are often
closer to a normative benchmark than buying prices
(Yechiam, Abofol, & Pachur, in press; Yechiam, Ashby, &
Pachur, in press).

Although empirical support has been garnered for each of
these proposals, it is currently unclear how they fare against
each other, or how well their predictions can actually be told
apart. Here, we propose a cognitive modeling approach to
formalize, disentangle, and directly compare alternative ac-
counts of buyer–seller differences in pricing decisions of mon-
etary lotteries. Cognitive modeling is becoming increasingly
popular in cognitive science (Busemeyer & Diederich, 2010;
Lewandowsky & Farrell, 2010), but we know of no compre-
hensive and quantitative model comparison of the mecha-
nisms proposed to underlie buying and selling prices.

To be able to test the interesting possibility suggested by
Yechiam and Hochman’s (2013a) loss-attention account that
buyers and sellers differ in learning and memory processes,
we investigate buying and selling prices as decisions from
experience (e.g., Hertwig & Erev, 2009). Specifically, we
use the sampling paradigm, in which people are asked to eval-
uate monetary lotteries whose payoff distributions are initially
unknown, but one can freely sample from them by clicking on
a button that realizes a draw from the respective distribution.2

The magnitude and relative frequency of the experienced out-
comes can then be used to construct a subjective valuation. If,
as proposed by Yechiam and Hochman (2013a), sellers pay
more attention to the task than buyers do, they may differ in

the learning process—a possibility that has not been tested
previously. The sampling paradigm—and decisions from ex-
perience in general—are increasingly employed to examine
risky choice, in particular because it lays open the underlying
search and learning processes (e.g., Newell & Camilleri, 2011;
Hertwig, 2015; Hills & Hertwig, 2010; Lejarraga, Hertwig, &
Gonzalez, 2012; Rakow, Demes, & Newell, 2008; Rakow &
Newell, 2010). Decisions from experience are also increasing-
ly being used to study pricing decisions for individual objects
(e.g., Ashby & Rakow, 2014; Golan & Ert, 2015).

For greater generality of our model comparison and be-
cause none of the currently existing formal frameworks can
accommodate all of the accounts of buyer–seller differences
mentioned above, we implemented the accounts in three com-
putational frameworks: reinforcement learning (e.g., Sutton &
Barto, 1998; Yechiam & Busemeyer, 2005), instance-based
learning theory (Gonzalez & Dutt, 2011), and cumulative
prospect theory (Tversky & Kahneman, 1992). One important
difference between the frameworks is that whereas reinforce-
ment learning models and instance-based learning theory can
also model how an option’s attractiveness is sequentially
learned from experience, cumulative prospect theory has been
originally developed for situations in which information about
the outcomes and probabilities of lotteries are summarized to
participants. This is not problematic here, however, because—
as in other applications of cumulative prospect theory to deci-
sions from experience (e.g., Abdellaoui, L’Haridon, &
Paraschiv, 2011; Jarvstad, Hahn, Rushton, & Warren, 2013;
Kellen, Pachur, & Hertwig, 2016; Lejarraga, Pachur, Frey, &
Hertwig, 2016; Ungemach, Chater, & Stewart, 2009)—we
only model the valuation at the end of the sampling process.
Nevertheless, it should be noted that when applying cumula-
tive prospect theory to decisions from experience, we assume
that people have an accurate sense of the relative frequencies
of the outcomes they experience (which are then used as prob-
abilities in the modeling); this seems a plausible assumption
(e.g., Hasher & Chromiak, 1977; Underwood, Zimmerman, &
Freund, 1971; Ungemach et al., 2009). The comparison of
reinforcement learning and instance-based learning theory
with cumulative prospect theory allows us to test whether
processes specific to experiential learning (e.g., recency, mem-
ory decay) are necessary to capture buyer–seller discrepancies
in pricing decisions from experience. Overall, our quantitative
model comparison provides insights into which minimal as-
sumptions about buyer–seller differences in mechanisms are
necessary to capture the endowment effect in the context of
monetary lotteries.

Morewedge and Giblin (2015) recently proposed an attri-
bute sampling bias theory, which attempts to integrate various
manifestations of buyer–seller differences in valuation. In a
nutshell, it is argued that ownership influences the accessibil-
ity of frame-consistent attributes by biasing search, attention,
and recollection akin to confirmatory hypothesis testing. Our

2 Several experimental paradigms exist in the literature on decisions from
experience (for an overview, see Hertwig & Erev, 2009). Alternatives to the
sampling paradigm are the partial-feedback and the full-feedback paradigms,
in which each sample represents a consequential choice (i.e., exploration and
exploitation collapse) and participants receive feedback about the chosen op-
tion and both options, respectively.
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cognitive modeling approach complements Morewedge and
Giblin’s proposal. Specifically, the focus of our article is to
model information processing subsequent to information
search, whereas Morewedge and Giblin are more concerned
with processes that include information search.

In what follows, we first describe the candidate accounts of
buyer–seller discrepancies tested in more detail; we then for-
malize these accounts as model variants within the three com-
putational frameworks. In Study 1, we test the models by
reanalyzing empirical data available from an experiment by
Pachur and Scheibehenne (2012), in which participants made
hypothetical pricing decisions in an experiential sampling par-
adigm. In Study 2, we draw on data from a new experiment, in
which participants’ pricing decisions were incentivized.
Finally, we present model recovery analyses that examine
how well the best performing models in Studies 1 and 2 can
be told apart. We conclude by discussing implications of the
proposed cognitive modeling approach and the findings ob-
tained for research on the endowment effect and valuation
from experience.

As noted above, we examine the endowment effect in the
context of monetary lotteries. Although the seminal investiga-
tions on the endowment effect (e.g., Kahneman et al., 1990;
Thaler, 1980) involved the valuation of consumer items such
as mugs and pens, many subsequent studies have turned to
monetary lotteries and found a robust endowment effect there
as well (e.g., Birnbaum, Coffey, Mellers, & Weiss, 1992;
Birnbaum & Zimmerman, 1998; Brenner et al., 2012; Casey,
1995; Isoni et al., 2011; Kachelmeier & Shehata, 1992; Peters,
Slovic, & Gregory, 2003; for a meta-analysis, see Yechiam,
Ashby, & Pachur, in press). In contrast to consumer items, an
advantage of lotteries is that their attributes can be quantified
precisely (which is important for the modeling) and that they
also allow to test for buyer–seller differences in risk attitude.
Yet, the precise nature of lotteries, whose outcomes can be
evaluated and retrieved rather easily, might reduce the influ-
ence of subjective factors in the valuation. This could explain
why the endowment effect for monetary lotteries, while sub-
stantial, seems to be smaller than for public, safety, or private
goods (Horowitz & McConnell, 2002).

Accounts of buyer–seller differences in valuation

From several accounts (e.g., loss aversion, loss attention, stra-
tegic misrepresentation) of discrepancies between buying and
selling prices, in the following we derive specific hypotheses
on how buyers and sellers might differ in various aspects of
the cognitive processing (e.g., outcome sensitivity, choice sen-
sitivity, learning, probability sensitivity, response bias) when
they price monetary lotteries. We first provide a conceptual
introduction to the various accounts; we then formalize the
derived mechanisms using the computational frameworks of

reinforcement learning, instance-based learning theory, and
cumulative prospect theory. Figure 1 provides a summary
overview of the accounts, in which differences between
buyers and sellers in cognitive mechanism are hypothesized
by the accounts and the computational frameworks in which
we implement these hypotheses.

Loss aversion

In their original studies on the endowment effect, Kahneman
and colleagues (1990) proposed that B[t]his effect is a mani-
festation of ‘loss aversion,’ the generalization that losses are
weighted substantially more than objectively commensurate
gains in the evaluation of prospects and trades^ (pp. 1327–
1328; see also Thaler, 1980). In other words, it is assumed that
being endowed with an object shifts the reference point such
that having the object is the status quo and selling it is viewed
as a potential loss. As losses have an aversive effect that the
decision maker strives to avoid, this affects the processing of
outcome information.

Loss aversion is accommodated in the value function,
which translates objective outcomes into subjective values
(Kahneman & Tversky, 1979). Specifically, the function has
a steeper curvature for losses than for gains, meaning that
increases in outcomes have a greater impact on subjective
values in the loss domain than in the gain domain. The deci-
sion maker’s outcome sensitivity is consequently higher for
losses than for gains. According to the loss-aversion account
of buyer–seller differences in pricing, sellers should have
higher outcome sensitivity than buyers.

Loss attention

Yechiam and Hochman (2013a) argued for a different view of
the effect of losses: Rather than (exclusively) triggering avoid-
ance, losses are proposed to Bincrease the overall attention
allocated to the situation^ (pp. 213–214), which can lead to
better performance. In support of their attentional model,
Yechiam and Hochman (2013b) reported a study in which
the option with the higher expected value was chosen more
frequently when it also had a chance of leading to a (small)
loss (e.g., win $200 with a chance of 50%, otherwise lose $1)
than when not (e.g., win $200 with a chance of 50%, other-
wise win $1). The authors proposed that an attentional effect
might also contribute to buyer–seller differences in pricing
decisions (Yechiam & Hochman, 2013a, p. 502): If sellers
frame the possible outcomes of the object as losses
(Kahneman et al., 1990), they may invest more attention in
the task and thus show better performance. Consistent with
this prediction, Yechiam, Abofol, and Pachur (in press) found
that selling prices for lotteries are often more closely aligned
with the lotteries’ expected values (i.e., their normative prices)
than are buying prices (see also Manson & Levy, 2015;
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Yechiam, Ashby, & Pachur, in press). How might increased
attention affect the cognitive processing specifically? Here we
consider two aspects: (a) increased choice sensitivity and (b)
better learning and memory. Although it may not be immedi-
ately apparent how better processing (of sellers) can also lead
to systematically higher valuations (i.e., the endowment ef-
fect), later in this article (see General Discussion and
Appendix F) we show that because of an asymmetric regres-
sion effect, under risk seeking (i.e., a convex utility function)
higher choice sensitivity (expected for sellers) can indeed lead
to systematically higher valuations than lower choice sensitiv-
ity (expected for buyers); further, it is shown that when attrac-
tive outcomes have a relatively high probability, also both
higher learning rate and better memory of sellers can lead to
an endowment effect.

Choice sensitivity Yechiam and Hochman (2013a) proposed
that the enhanced task attention triggered by the possibility of
a loss increases the decision-maker’s sensitivity to their sub-
jective valuation of an option when the valuation is translated
into a response. As a consequence, the decision maker would
be more consistent in choosing a response according to their
subjective valuation and pick the corresponding response
more deterministically. Ceteris paribus, and unless the valua-
tion itself is highly inaccurate, the response will be a more
accurate reflection of the experiences made by the decision
maker (rather than reflecting noise) and thus lead to better
performance. This sensitivity is referred to as choice
sensitivity. Fitting a reinforcement learning model with a
choice sensitivity parameter to experience-based decisions,
Yechiam and Hochman (2013b) indeed obtained a higher es-
timate for this parameter in a condition with losses than in a

condition with gains. In the context of pricing decisions by
buyers and sellers (where decision makers choose among al-
ternative pricing responses), choice sensitivity might thus be
higher for the latter than for the former.

Learning and memory Beyond higher choice sensitivity, en-
hanced attention when faced with potential losses may affect
cognitive processing more generally. In the context of a learn-
ing process, losses may influence how strongly the decision
maker adjusts the expected reward of an option upon receiv-
ing feedback. In support of this possibility, Yechiam and
Hochman (2013b) found faster improvement and a higher
learning rate parameter (in addition to higher choice sensitiv-
ity) in a condition with losses than in a condition with gains. If
sellers frame the outcomes of a traded option as losses (in-
creasing their attention to the task), they might thus have a
higher learning rate than buyers.

An attentional effect of loss attention during learning might
also lead sellers to encode the experienced outcomes more
deeply, affecting how quickly the memory traces of those
outcomes are forgotten. As a consequence, sellers might show
lower memory decay than buyers. Further, increased attention
by sellers could also lead to less noise during the retrieval of
experienced outcomes. Implementing buyer–seller differences
in these mechanisms in reinforcement learning models and
instance-based learning theory, we can formalize and test the
possibilities.

Probability weighting

Some studies have suggested that buyers and sellers differ in
how they respond to probability information. For instance,
Brenner and colleagues (2012; see also Blondel & Levy-

Loss aversion

Loss attention

Probability weighting

Response bias/”strategic heuristic” (β)

Choice sensitivity (φ)

Outcome sensitivity (α)

Theoretical account

Learning rate ( ), memory decay (d)

Hypothesized cognitive 

mechanism of buyer-

seller difference

Computational framework 

in which hypothesis is 

implemented

RL, CPT

RL, IBL, CPT

RL, IBL

CPT

RL, IBL, CPT

Probability sensitivity (γ)

Strategic misrepresentation

Optimism (δ) CPT

Fig. 1 Overview of different theoretical accounts of buyer–seller
differences in valuation, the differences in cognitive mechanism
between buyers and sellers that can be derived from the accounts, and

in which computational frameworks we implemented the hypothesized
cognitive mechanisms. RL = reinforcement learning; CPT = cumulative
prospect theory; IBL = instance-based learning theory
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Garboua, 2008) found larger overweighting of small-
probability events by sellers than by buyers. Casey (1995)
fitted probability weighting functions on the individual level
to buying and selling prices for monetary lotteries, and simi-
larly obtained more strongly curved functions for sellers than
for buyers. (When the functions were fitted to responses on the
aggregate level, there were no buyer–seller differences.)

Strategic misrepresentation

Finally, it has been proposed that buyer–seller discrepancies in
pricing might result, at least in part, from strategic misrepre-
sentation of their actual valuations. For instance, Plott and
Zeiler (2005) proposed that Bthe use of the word ‘sell’ can
automatically call forth a margin above the minimum that an
individual might accept in exchange for a good^ (p. 537). The
idea is that people might overgeneralize the use of a Bsell high,
buy low^ strategy (or Bstrategic heuristic^), that might be
beneficial during negotiation in naturalistic trading contexts,
to situations in the lab (Korobkin, 2003; see also Knez, Smith,
& Williams, 1985). From this perspective, the endowment
effect arises from a tendency of seller and buyers to inflate
or deflate, respectively, their actual valuation of the object.
One straightforward way to formalize such distortion is in
terms of a simple additive response bias. Birnbaum and
Stegner (1979) found that a model that captured buyer–seller
differences in terms of a bias parameter Bprovided a good
account of this change of weight across points of view^ (i.e.,
buyer vs. seller; p. 71). Response bias parameters have often
been included in formal psychological models (e.g., Green &
Swets, 1966; Ratcliff, 1978) and are important for
disentangling effects of processing factors from those of stra-
tegic influences (e.g., Jones, Moore, Shub, & Amitay, 2015).
In the context of the endowment effect, the role of strategic
effects has mainly been addressed experimentally, but to our
knowledge there have been no attempts to actually measure
the size of response bias and compare its contribution to other
possible mechanisms of buyer–seller differences.

Overview of the models

We implemented the candidate mechanisms derived from the
accounts as formal, mathematical models within three promi-
nent computational frameworks: reinforcement learning,
instance-based learning theory, and cumulative prospect the-
ory (see Fig. 1). Models of reinforcement learning have prov-
en highly successful in modeling experience-based decision
making (e.g., Busemeyer & Myung, 1992; Steingroever,
Wetzels, & Wagenmakers, 2014; Yechiam & Busemeyer,

2005). Instance-based learning theory (Gonzalez & Dutt,
2011) models decisions from experience based on processes
of memory retrieval and decay. Cumulative prospect theory
(Tversky & Kahneman, 1992) is arguably the most prominent
account of decision making under risk and has also been used
to describe experience-based decision making (Abdellaoui
et al., 2011; Glöckner, Hilbig, Henninger, & Fiedler, 2016;
Jarvstad et al., 2013; Jessup, Bishara, & Busemeyer, 2008;
Kellen et al., 2016; Lejarraga et al., 2016; Ungemach et al.,
2009). It allows us to study probability weighting (i.e., how
probability information is represented in decisions), which is
an important concept in the context of risky decision making
(e.g., Wakker, 2010) and, as mentioned above, has been pro-
posed as contributing to buyer–seller differences in valuation.

For each of these computational frameworks, we formulate
different model variants, each of which implements one (or
combinations) of the candidate mechanisms. In each model
variant, one (or several) of the parameters is estimated sepa-
rately for sellers (i.e., willing to accept condition; WTA) and
buyers (i.e., willing to pay condition; WTP), while the other
parameters are estimated for buyers and sellers together. This
approach allows us to evaluate how well the model variants—
and thus the mechanisms of buyer–seller differences in pricing
decisions that they implement—are able to capture empirical
data.

Reinforcement learning

The general notion underlying reinforcement learning is that
an expectancy of an option is gradually formed through re-
peated feedback. The expectancy represents the future reward
to be expected from the option and is repeatedly updated as a
function of experience (for an overview, see Gureckis & Love,
2015). This learning process is formalized in terms of three
psychological components: a utility function, an updating
rule, and a choice (or action-selection) rule (cf. Steingroever,
Wetzels, & Wagenmakers, 2013a; Yechiam & Busemeyer,
2005).

Utility function This function translates the objective value of
an experienced outcome, x, into a subjective value or utility, u.
As commonly assumed in models of risky decision making,
we used a power utility function,

u xð Þ ¼ xα ð1Þ
where α (0 < α) governs the curvature of the utility function;
larger values of α indicate greater sensitivity to differences in
the outcomes. When α = 1, the subjective utilities reflect the
objective values linearly; with 0 < α < 1 the utility function is
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concave (for x > 0; convex for x < 0), indicating a reduced
sensitivity to differences in the objective magnitudes. Here,
we formally implement the prediction that sellers have higher
outcome sensitivity than buyers (as proposed by the loss-
aversion account) via the exponent parameter in the utility
function. Accordingly, α should be higher for sellers than
for buyers, αWTA > αWTP.

Note that differences in outcome sensitivity, which mean
differences in the steepness of the curvature of the utility func-
tion, can be formalized in several ways. An alternative to
allowing for differences in the exponent of the power function
in Equation 1 would be to formalize a steeper utility function
for losses by u(x) = –λ(–xα), with λ > 1 (Tversky &
Kahneman, 1992). Both this and the approach adopted
in Equation 1 similarly affect the steepness of the utility
function, though in slightly different ways. An addition-
al analysis, in which buyer–seller differences in out-
come sensitivity were implemented by estimating a
common α for buyers and sellers and estimating a λ
for the seller condition (with λ > 1 indicating higher
outcome sensitivity for sellers), showed a worse model
fit than when estimating α separately for buyers and
sellers (these analyses also clearly indicated that a non-
linear, concave utility function is necessary to capture
the data).

Updating rule After a subjective utility of the experi-
enced outcome has been formed, the expectancy of the
option is updated. Several updating rules have been pro-
posed in the literature; none has emerged as being gen-
erally superior (e.g., Ahn, Busemeyer, Wagenmakers, &
Stout, 2008; Steingroever et al., 2013a, 2013b; Yechiam
& Busemeyer, 2005). We therefore considered three
updating rules that have received support in studies on
experience-based decision making. According to the del-
ta rule (e.g., Busemeyer & Myung, 1992; Fridberg
et al., 2010; Yechiam & Busemeyer, 2008), the expec-
tancy of choosing the option at trial t (that is here: after
t samples have been drawn) is determined by adjusting
the expectancy at trial t – 1 based on the discrepancy
between this previous expectancy and the utility of the
outcome experienced at trial t:

E tð Þ ¼ E t−1ð Þ þ ϕ⋅ u tð Þ−E t−1ð Þ½ � ð2Þ
where ϕ [0 ≤ ϕ ≤ 1] represents a learning rate param-
eter governing how strongly the expectancy is adjusted.
If sellers learn faster than buyers (e.g., because they
invest more cognitive resources in the task), one might
expect a higher value for the former than for the latter,
that is, ϕWTA > ϕWTP.

An alternative updating process is formulated by the value-
updating rule (Ashby & Rakow, 2014; Hertwig, Barron,

Weber, & Erev, 2006), according to which the expectancy of
the option at trial t is determined as

E tð Þ ¼ 1− 1=tð Þϕ
h i

⋅E t−1ð Þ þ 1=tð Þϕ⋅u tð Þ ð3Þ

As in the delta rule, the parameter ϕ [0 ≤ ϕ] gov-
erns the impact of previous experiences. With ϕ < 1
the rule yields recency (i.e., stronger impact of more
recent experiences); with ϕ > 1 it yields primacy (i.e.,
stronger impact of less recent experiences). If, as pro-
posed by Yechiam and Hochman (2013a), sellers pay
more attention to the task than buyers, they might
manifest lower recency, that is, ϕWTA should be closer
to 1 than ϕWTP is.

Third, we tested the natural-mean rule, which has been
found to provide a good description of decisions from expe-
rience (Ashby & Rakow, 2014; Hertwig & Pleskac, 2008;
Wulff & Pachur, 2016). In contrast to the value-updating rule,
the natural-mean rule weights all experiences equally and thus
simply represents the average across all experienced outcomes
of a lottery:

E tð Þ ¼ 1− 1=tð Þ½ �⋅E t−1ð Þ þ 1=tð Þ⋅u tð Þ ð4Þ

Note that the natural-mean rule is nested under the
value-updating rule, with ϕ = 1. It thus can also serve
to assess whether the added model flexibility achieved
by having a parameter that allows past experiences to
be differentially weighted is warranted. Note that as the
natural-mean rule has no free parameter, it does not as-
sume that sellers and buyers differ in the updating
process.

Choice rule Finally, a rule is required that translates the ex-
pectancy of a lottery into a pricing response. Acknowledging
that decision making is probabilistic (e.g., Mosteller & Nogee,
1951), a popular approach to derive a response probability is a
ratio-of-strength rule, according to which the response is a
probabilistic function of the relative strength of a given re-
sponse Ri relative to all J possible responses (e.g., Luce,
1959):

Pr Ri½ � ¼ siX J

j¼1
s j

ð5aÞ

where si is the strength for response Ri. In this article,
the models are applied to a task where participants pro-
vided prices for each lottery by choosing one of 11
values on a response scale representing the range of
the lottery’s possible outcomes divided into 10 equally
spaced intervals (see Fig. 2). Applied to this setting, the
response (or choice) rule determines the probability that
scale value Ri is chosen among the J scale values at
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trial t, given the lottery’s expectancy. The probability is
a function of the distance between the scale value (e.g.,
53 CHF) and the expectancy of the lottery,

Pr Ri tð Þ½ � ¼ Di;tX J

j¼1
Dj;t

ð5bÞ

The distance index, Di,t, at trial t follows an exponential
decay function of the absolute difference between the scale
value Ri and the expectancy (see Shepard, 1958):

Di;t ¼ e−θ Ri−E tð Þþβj j ð6Þ

The parameter θ determines how strongly the predict-
ed probability of choosing the respective scale value
decreases with increasing difference between the expec-
tancy and the scale value. The parameter θ thus effec-
tively controls how sensitive the choice probability is to
this difference (with higher values indicating higher sen-
sitivity).3 According to Yechiam and Hochman’s (2013a)
loss-attention account, the choice sensitivity parameter
should be higher for sellers than for buyers (i.e., θWTA

> θWTP).
The β parameter in Equation 6 represents response bias

(implementing the notion of strategic misrepresentation by
way of a Bbuy low, sell high^ strategy), an additive con-
stant that increases or decreases (depending on the sign of
β) the expectancy of a given lottery when it is translated
into a choice of one of the scale values. Assuming that
sellers inflate their subjective valuations of the lottery

and buyers deflate their subjective valuations (e.g., Plott
& Zeiler, 2005), the bias parameter should be higher for
the former than for the latter (i.e., βWTA > βWTP).

Additionalmodel variants testedBecause the buyer–seller
discrepancies may be driven by more than one mecha-
nism, we also tested model variants in which multiple
parameters were estimated separately for the buyer and
seller conditions. For instance, we tested a model vari-
ant allowing for separate parameters for buyers and
sellers both in outcome sensitivity (i.e., αWTA and
αWTP) and learning rate (i.e., ϕWTA and ϕWTP). Of
these model variants, only those that allowed buyers
and sellers to vary in terms of both outcome sensitivity
(α) and response bias (β) achieved competitive model
performance. We therefore report the results of only
these models. To test whether the increased model flex-
ibility achieved by allowing for a nonlinear utility func-
tion (see Equation 1) was matched by a corresponding
increase in predictive power, we also tested model var-
iants in which the utility function was restricted to be
linear (i.e., α = 1; e.g., Busemeyer & Townsend, 1993).
The performance of these variants was clearly inferior,
and they were therefore not considered further.

The combination of the utility function and choice
rule with the three updating rules resulted in three types
of reinforcement learning models, which we refer to
(based on the underlying updating rule) as the delta
model, the value-updating model, and the natural-mean
model. Table 1 summarizes the five variants of the delta
model, the five variants of the value-updating model
(VUM), and the four variants of the natural-mean model
(NM) tested. These models assume buyer–seller differ-
ences in learning/memory (DELTAphi, VUMphi), out-
come sensitivity (DELTAalpha, VUMalpha, NMalpha),
choice sensitivity (DELTAtheta, VUMtheta, NMtheta),

Fig. 2 Presentation format of the valuation task. Example shows WTP (i.e., buying) condition (with instructions translated from German into English)

3 In additional analyses, we tested all models using a version of the choice rule
in which the θ parameter in Equation 6 was set to 1 (see Nosofsky & Zaki,
2002) and a free choice-sensitivity parameter was instead included in
Equation 5b (as in the softmax choice rule; Sutton & Barto, 1998). In this
version, model fit was considerably inferior; however, neither the qualitative
pattern of the model performance nor the parameter estimates were affected by
how choice sensitivity was formalized.
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response bias (DELTAbeta, VUMbeta, NMbeta), or in both
outcome sensitivity and response bias (DELTAalphabeta,
VUMalphabeta, NMalphabeta).

Instance-based learning theory

An alternative framework for modeling decisions from
experience was recently proposed by Gonzalez and Dutt
(2011). In analyses of aggregate choice data, instance-
based learning theory (IBL) outperformed reinforcement
learning models (and other models) in describing deci-
sions from experience. In IBL, the subjective valuation
of a lottery is a function of instances stored in memory,
which represent the experienced outcomes of the lottery.
A valuation is constructed by Bblending^ (i.e., integrat-
ing) the instances; the blended value, B, at trial t de-
pends on the outcomes experienced for the lottery as
well as the probability of retrieving the corresponding
instances from memory, and is defined as

B tð Þ ¼
XK
k¼1

pk tð Þxk ð7Þ

where pk(t) is the retrieval probability of outcome xk at
trial t.4 The retrieval probability is in turn a function of
the activation of the outcome in memory relative to the
activation of all N other experienced outcomes of that
lottery,

pk tð Þ ¼ e
Ak tð Þ=τ

XN
n¼1

e
An tð Þ=τ

ð8Þ

where τ is random noise defined as

τ ¼ σ�
ffiffiffi
2

p
ð9Þ

σ is a free noise parameter, with higher values indicating
more noise in the extent to which the retrieval follows
the outcome’s activation strength. The activation of out-
come xk at trial t is a function of the recency and

Table 1 Overview of the Tested Variants of Reinforcement LearningModels, Instance-Based Learning Theory (IBL), and Cumulative Prospect Theory
(CPT).

Model Model parameter

Recency (ϕ) Outcome
sensitivity (α)

Choice
sensitivity (θ)

Response bias
(β)

Decay (d) Noise (σ) Probability
sensitivity (γ)

Elevation (δ)

Reinforcement learning models
DELTAphi ϕWTA ϕWTP α θ – – – – –
DELTAalpha ϕ αWTA αWTP θ – – – – –
DELTAtheta ϕ α θWTA θWTP – – – – –
DELTAbeta ϕ α θ βWTA βWTP – – – –
DELTAalphabeta ϕ αWTA αWTP θ βWTA βWTP – – – –
VUMphi ϕWTA ϕWTP α θ – – – – –
VUMalpha ϕ αWTA αWTP θ – – – – –
VUMtheta ϕ α θWTA θWTP – – – – –
VUMbeta ϕ α θ βWTA βWTP – – – –
VUMalphabeta ϕ αWTA αWTP θ βWTA βWTP – – – –
NMalpha – αWTA αWTP θ – – – – –
NMtheta – α θWTA θWTP – – – – –
NMbeta – α θ βWTA βWTP – – – –
NMalphabeta – αWTA αWTP θ βWTA βWTP – – – –
Instance-based learning theory
IBLd – – – – dWTA dWTP σ – –
IBLsigma – – – – d σWTA σWTP – –
IBLbeta – – – βWTA βWTP d σ – –
Cumulative prospect theory
CPTalpha – αWTA αWTP θ – – – γ δ
CPTgamma – α θ – – – γWTA γWTP δ
CPTdelta – α θ – – – γ δWTA δWTP

CPTtheta – α θWTA θWTP – – – γ δ
CPTbeta – α θ βWTA βWTP – – γ δ
CPTalphabeta – αWTA αWTP θ βWTA βWTP – – γ δ

Note. DELTA = delta model; VUM = value-updating model; NM = natural-mean model.

4 In contrast to reinforcement models and cumulative prospect theory (see
below), in IBL it is not assumed that the experienced outcomes are submitted
to a nonlinear transformation. Future research might test IBL assuming a
nonlinear transformation of outcomes and, potentially, also of the probabilities
(as in cumulative prospect theory; see Equation 12).
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frequency of retrieving relevant instances from memory,
and is determined as follows:

Ak tð Þ ¼ ln
X

tk∈ 1;…;t−1f g
t−tkð Þ−d

0
@

1
Aþ σ� ln

1−ρk;t
ρk;t

 !
ð10Þ

The right-hand part of the equation represents Gaussian
noise, with ρk,t being a random draw from a uniform distribu-
tionU(0, 1). d is a free decay parameter. With higher values of
d, the decay of the instance’s activation is faster, and it is
harder for the model to retrieve instances of outcomes that
occurred many trials ago.

As for the reinforcement learning models, the predicted
choice probabilities for the J values on the response scale
(yielding a pricing decision) were determined on the basis of
the difference between IBL’s valuation of a lottery (i.e., the
blended value; see Equation 7) and each scale value (see
Equation 6). Although IBL chooses deterministically, we
followed the procedure proposed by Gonzalez and colleagues
(e.g., Gonzalez & Dutt, 2011; Lejarraga, Dutt, & Gonzalez,
2012) to derive choice probabilities for the different scale
values (given a particular set of parameter values).
Specifically, we simulated 5,000 draws of random noise (see
Equation 10) and determined for each scale value its distance
to the resulting blended value of the lottery. At each draw, the
scale value with the smallest distance was chosen determinis-
tically as a pricing response for the lottery. Because the blend-
ed value varied due to the random noise component, this ap-
proach yielded a probability distribution across the different
values on the response scale.

As shown in Table 1, we tested three model variants of IBL
to implement different mechanisms of buyer–seller differ-
ences. The first model variant, IBLd, allows for differences
between buyers and sellers in the decay parameter d. To the
extent that sellers pay more attention during the task than
buyers (as proposed by the loss-attention account) and thus
encode experienced outcomes better, decaymight be lower for
sellers than for buyers (i.e., dWTA < dWTP). The second variant,
IBLsigma, allows for differences in the noise parameter σ,
governing the noise in the retrieval of instances of experienced
outcomes. If sellers pay more attention than buyers, noise
might be larger for the latter (i.e., σWTA < σWTP). Finally,
IBLbeta implements the notion that sellers and buyers have
different response biases, βWTA and βWTP, formalized as
added or subtracted constants as in Equation 6—but with
E(t) substituted with B(t)—that is, when the difference be-
tween the blended value and each scale value is calculated.

Cumulative prospect theory

Finally, we implemented candidate mechanisms of buyer–
seller differences within the framework of cumulative

prospect theory (CPT; Tversky & Kahneman, 1992). CPT
has the same power function transforming objective outcomes
into subjective values as the reinforcement learning model
(see Equation 1); the loss-aversion account therefore predicts
that the outcome sensitivity parameter is larger in the seller
condition than in the buyer condition (i.e., αWTA > αWTP).

In addition, CPT assumes a probability weighting function
that transforms the probability of an outcome into a subjective
decision weight. For the present application of CPT, we as-
sume that the decision maker extracts a probability for each
outcome from the individually experienced relative frequency
of the outcome and we use these experienced probabilities
(which, due to sampling error, might deviate from the
Bobjective^ probabilities of the outcomes; see Appendix A)
to model the valuations and estimate the probability weighting
function. The decision weights in CPT result from a rank-
dependent transformation of the (experienced) probabilities of
the outcomes.With outcomes 0 < x1 ≤ . . . < xm and correspond-
ing probabilities p1 . . . pm, the weights are defined as follows:

πm ¼ w pmð Þ
πi ¼ w pi þ…þ pmð Þ−w piþ1 þ…þ pm

� �
for 1≤ i < m

ð11Þ
with w being the weighting function. For positive out-
comes, the decision weight for an outcome represents the
marginal contribution of the outcome’s probability to the
total probability of obtaining a better outcome. The
weighting function has an inverse S-shaped curvature, corre-
sponding to an overweighting of low probability outcomes
and underweighting of high probability outcomes. We used
a two-parameter weighting function originally proposed by
Goldstein and Einhorn (1987) (additional analyses showed
that this functional form outperformed various other forms
that have been proposed in the literature; for an overview
see Stott, 2006). It separates the curvature of the probability
weighting function from its elevation and is defined as fol-
lows:

w pð Þ ¼ δpγ

δpγ þ 1−pð Þγ ð12Þ

withγ (>0) governing the curvature of the weighting function.
Values of γ < 1 indicate a stronger inverse S-shaped curvature
and lower sensitivity to probabilities (in the modeling analyses
below, we also allow values of γ > 1, yielding an S-shaped
curvature). The parameter δ (>0) governs the elevation of the
weighting function and can be interpreted as the attractiveness
of gambling and thus also as an indicator of a person’s risk
attitude, with (in the gain domain) higher values on δ indicat-
ing higher risk seeking (see Qiu & Steiger, 2011).

By estimating the γ and δ parameters separately for buyers
and sellers, we can test the possibility that the two trading
perspectives are associated with differences in probability
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weighting. The results of Brenner and colleagues (2012) sug-
gest that sellers might show lower probability sensitivity than
buyers (i.e., γWTA < γWTP). Sellers could also be more risk
seeking, as indicated by a higher elevation of the probability
weighting function (i.e., δWTA > δWTP; see Brenner et al.,
2012; Blondel & Lévy-Garboua, 2008).

According to CPT, the overall subjective valuation V of a
lottery is given by:

V ¼
XK
k¼1

v xkð Þπk ð13Þ

where v(xk) is the value function representing the subjective
value of outcome xk of the lottery. We used the same power
function as in the reinforcement learning framework (see
Equation 1). As for the reinforcement models, the predicted
choice probability for each value on the response scale was
derived from the subjective valuation. That is, the choice
probability is a function of the absolute difference between
the scale value and the predicted subjective value—see
Equations 5b and 6; E(t) in Equation 6 is substituted with V.
Table 1 summarizes the six model variants of CPT tested,
allowing for buyer–seller differences in outcome sensitivity
(CPTalpha), probability sensitivity (CPTgamma), elevation
(CPTdelta), choice sensitivity (CPTtheta), response bias
(CPTbeta), or in both outcome sensitivity and response bias
(CPTalphabeta).

To compare the candidate mechanisms for buyer–seller
differences in pricing decisions from experience, we next
fitted the variants of the reinforcement learning models, IBL,
and CPT to the experimental data obtained by Pachur and
Scheibehenne (2012; experience condition) and evaluated
their performance in capturing the data, taking into account
the differences in model complexity between the different
model variants.

Study 1: How well do the models capture buyer–seller
discrepancies?

In the experiment by Pachur and Scheibehenne (2012), par-
ticipants (N = 76) provided valuations for 30 monetary lotter-
ies from both a seller perspective (WTA condition) and a
buyer perspective (WTP condition; see Appendix A for a
complete list of the lotteries). In the WTA condition, partici-
pants were asked to imagine that they owned the right to play a
lottery and to indicate the minimum amount of money they
would accept to sell that right. To indicate a price, participants
chose one of 11 values on a response scale, spanning the range
of the lottery’s possible outcomes in 10 equally spaced inter-
vals (see Fig. 2). In the WTP condition, participants were
asked to imagine that they had the chance to buy the right to
play a lottery and to indicate the maximum amount they
would be willing to pay. The two conditions were presented

as separate blocks, the order of which was counterbalanced
across participants and within each condition, and the 30 lot-
teries were presented in random order. Participants were not
told in advance that the two blocks contained the same lotter-
ies. At each trial, a lottery was presented as an initially un-
known payoff distribution. Participants learned about its pos-
sible outcomes by clicking a button on the computer screen to
make a random draw from the underlying payoff distribution.
They could draw as many samples as they wanted (but had to
draw at least one) before stating a buying or selling price (the
mean sample size per lottery was 23.1, SD = 13.5). The valu-
ations of the lotteries were hypothetical. Figure 3 (left panel)
shows the average selling and buying prices obtained by
Pachur and Scheibehenne (2012) for each lottery as a function
of the lottery’s expected value. As can be seen, the selling
prices were consistently higher than the buying prices.
Moreover, the selling prices were more closely aligned with
the lotteries’ expected values. How do the different formal
models reflect these differences between buyers and sellers?

Parameter estimation and model evaluation

On the basis of each participant’s sampled outcomes and pricing
responses, we estimated the model parameters using a maximum
likelihood approach (see Appendix B).5 (This also means that
CPT’s value and weighting functions were estimated based on
the experienced outcomes and probabilities.)Given that the buyer
and seller perspectives were manipulated using a within-subjects
design, we fitted all models on the level of the individual partici-
pant. The parameter estimation was based on a combination of a
gridsearchandsubsequentoptimizationusingthesimplexmethod
(Nelder&Mead,1965),withthe20bestfittingvaluecombinations
emerging from the grid search as starting points for simplex.6

Given that the lotteries differed considerably in both the magni-
tudesandtherangeoftheiroutcomes(seeAppendixA),themodel-
ing was based on the pricing responses and sampled outcomes
mapped on the 11-point response scale for each lottery. For in-
stance, the outcome B50 CHF^ in lottery 20 (Appendix A) was
mapped as B8.11^ on the 11-point scale. Using absolute values
would lead to lotteries with a larger outcome range contributing
more to the (mis)fit of the model than lotteries with a lower out-
come range. Additional analyses also showed that using absolute
values led to a considerablyworse fit of themodels.

5 Additional analyses fitting the models to minimize the mean squared devia-
tion between the predicted and empirical pricings (which then, however, could
not include a choice sensitivity parameter and thus did not allow us to test all
predictions of the loss-attention account) led to qualitatively very similar
results.
6 In the initial grid search, the parameter space was partitioned such that there
were up to (around) 4,800,000 parameter combinations (for the most complex
models), with a similar partitioning across the different parameters. The num-
ber of partitions was adjusted for each model such that a further increase did
not lead to better fit with simplex, suggesting that the best parameter set was
indeed identified.
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To evaluate the performance of the models while taking
into account differences in model complexity, we computed
for each model, separately for each participant, the Akaike
information criterion (AIC; e.g., Akaike, 1973; Burnham &
Anderson, 2002), which penalizes models with more free pa-
rameters, as well as the AIC model weights (e.g.,
Wagenmakers & Farrell, 2004). A more detailed description
can be found in Appendix C. We also calculated the Bayesian
information criterion (BIC; Burnham & Anderson, 2002;
Schwarz, 1978) and the BIC model weights, which are report-
ed in Appendix D. Because our model recovery analysis (see
below) showed that BIC could lead to a substantial misclassi-
fication of the underlying mechanism, however, our model
comparison focuses on the AIC values.

Results

Model performance. Which of the tested model variants
strikes the best balance between model complexity and model
fit in accounting for the data? Table 2 shows that the best
performing model overall (in terms of having the lowest
AIC summed across all participants) is CPTbeta, the variant
of cumulative prospect theory assuming buyer–seller differ-
ences in response bias, closely followed by CPTalphabeta, the
variant that additionally allows for differences in outcome
sensitivity. CPTbeta receives the strongest support also on the
individual level, with the highest average AIC weight and the
highest number of participants for whom the model showed
the best fit (although here it is closely followed by CPTdelta,
the variant allowing for differences in the elevation of the
probability weighting function). Interestingly, these results
thus show that a successful description of pricing decisions
from experience does not necessarily require the assumption
of a learning or forgetting mechanism—which is part of the
variants of the reinforcement learning model and instance-
based learning theory. With the exception of VUMalphabeta

and NM alphabeta, none of these models showed competitive
performance. Nevertheless, it is of note that within eachmodel
class, it is consistently the models assuming buyer–seller
differences in response bias, often in combination with
buyer–seller differences in outcome sensitivity, that perform
best.

As a test of absolute model fit, Fig. 4 (left panel) plots the
predictions of CPTbeta against the observed data. The figure
shows the average (across participants) predicted valuation
responses (based on the best fitting parameters) as a function
of the average observed buying and selling prices, separately
for each of the 30 lotteries (expressed on the 11-point response
scale). The predicted responses were determined by summing
across the response categories, each weighted by the predicted
choice probability (see Equation 5b). As can be seen, the
model does a good job of capturing the data (on average), as
indicated by the fact that the predictions line up rather closely
around the diagonal. Note that the endowment effect is
reflected by the pattern that selling prices (black dots) are
generally higher than buying prices (gray triangles).
Figure 4 further shows that the model variant assuming
buyer–seller differences in response bias (CPTbeta) re-
produces the data somewhat better than the one assum-
ing differences in outcome sensitivity (CPTalpha; middle
panel). Finally, the rightmost panel shows that the mod-
el assuming differences in choice sensitivity (CPTtheta)
yields a worse fit (note that random choice would be
indicated by a horizontal line).

Parameter estimates. The median estimated parameters of
the tested model variants are reported in Table 3 (Table 11 in
Appendix D reports the proportions of participants for whom
the parameter value was higher for the seller, WTA, than for
the buyer, WTP, conditions). Of particular interest are the
estimates for those parameters that were estimated separately
for the WTA and WTP conditions. According to the two best

Fig. 3 Average selling prices (WTA; black dots) and buying prices (WTP; gray triangles) for each of the 30 lotteries in Study 1 (left panel) and Study 2
(right panel). Error bars show standard error (corrected for the within-subjects design)
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Table 2 Model performance in Study 1: Deviance (-2*log likelihood), Akaike information criterion (AIC), Akaike weights, w(AIC), and number of
participants for whom the model showed the best fit (i.e., had the lowest AIC); the values for the three best performing models on the respective measure
are indicated in bold

Model Number of parameters –2*log(L) AIC w(AIC) Count of lowest AIC

M SD

Reinforcment learning models

DELTAphi 4 16,109 16,717 .004 .018 0

DELTAalpha 4 15,833 16,441 .017 .081 2

DELTAtheta 4 17,245 17,853 .006 .038 1

DELTAbeta 5 15,172 15,932 .041 .126 3

DELTAalphabeta 6 14,828 15,740 .058 .153 5

VUMphi 4 18,377 18,985 .002 .019 0

VUMalpha 4 15,319 15,927 .022 .071 2

VUMtheta 4 16,964 17,572 .005 .027 0

VUMbeta 5 14,486 15,246 .072 .108 3

VUMalphabeta 6 14,193 15,105 .096 .145 5

NMalpha 3 15,486 15,942 .017 .053 1

NMtheta 3 17,120 17,576 .002 .009 0

NMbeta 4 14,650 15,258 .063 .081 5

NMalphabeta 5 14,395 15,155 .066 .090 4

Instance-based learning theory

IBLd 3 28,159 28,615 < .001 < .001 0

IBLsigma 3 28,135 28,591 < .001 < .001 0

IBLbeta 4 19,431 20,039 .015 .110 1

Cumulative prospect theory

CPTalpha 5 14,562 15,322 .104 .179 10

CPTgamma 5 17,595 18,355 .005 .017 0

CPTdelta 5 14,795 15,555 .117 .211 13

CPTtheta 5 16,236 16,996 .007 .021 0

CPTbeta 6 14,064 14,976 .148 .176 14

CPTalphabeta 7 13,918 14,982 .132 .146 7

Note. DELTA = delta model; VUM = value-updating model; NM = natural-mean model; IBL = instance-based learning theory; CPT = cumulative
prospect theory. The deviance (i.e., –2 * log likelihood) assuming a random choice of one of the response categories is 287.75 * 76 = 21,869

Fig. 4 Empirical selling prices (WTA) and buying prices (WTP) plotted against model predictions (based on the best-fitting parameters) in Study 1. Shown are
the average (across participants) prices and model predictions for each lottery, separately for the WTA (black dots) and WTP (gray triangles) condition
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performing models, CPTbeta and CPTalphabeta, there are buyer–
seller differences on response bias such that sellers inflate and
buyers deflate the subjective valuation derived from the expe-
rienced outcomes. In addition, CPTalphabeta indicates that, con-
sistent with a loss-aversion account, sellers have a higher out-
come sensitivity than buyers.

Summary

Application of the formal models to empirical data report-
ed by Pachur and Scheibehenne (2012) yielded two im-
portant insights: First, model variants of cumulative pros-
pect theory generally achieved the best performance. This
suggests that a successful description of pricing decisions
from experience may not necessarily require the assump-
tion of learning or memory mechanisms. Second—across
computational frameworks and across aggregate and indi-
vidual levels—models assuming buyer–seller differences
in response bias seemed to strike the best balance between
model fit and parsimony, though they were closely
followed by the variant additionally allowing for differ-
ences in outcome sensitivity. Models implementing loss
attention obtained the least support.

Study 2: Modeling incentivized buying and selling
prices

According to the best performing model in Study 1,
buyers and sellers hardly differed in their subjective value
of experienced outcomes. This finding is inconsistent with
the prominent loss-aversion account of the endowment
effect, which predicts that sellers have higher outcome
sensitivity than buyers (Kahneman et al., 1991). Instead,
our results indicate that buyers and sellers differ in how
they translate their subjective valuation into a behavioral
response. This seems to support Plott and Zeiler’s (2005)
argument that discrepancies in buying and selling prices
may often reflect strategic misrepresentations, with people
inappropriately using a Bbuy low, sell high heuristic^ rath-
er than stating their actual subjective valuations (for a
critical discussion, see Isoni et al., 2011). However, in
Study 1, where the pricing decisions were not incentiv-
ized, such deviations did not have actual monetary conse-
quences; this may have amplified strategic misrepresenta-
tion and clouded buyer–seller differences in information
processing (e.g., outcome sensitivity). To test this conjec-
ture, we conducted a replication of Study 1, but using the
Becker-DeGroot-Marschak (BDM) procedure (Becker,
DeGroot, & Marschak, 1964) to incentivize participants
to reveal their actual valuations of the lotteries. Would
response biases recede under these conditions?

Method

Participants. Eighty students (43 female;M = 23.7 years, SD
= 3.5) participated in the experiment, which was conducted at
the Max Planck Institute for Human Development in Berlin,
Germany. Participants received €5 compensation plus an ad-
ditional performance-contingent payment (determined based
on the BDM method) ranging from –€0.03 to €4.25
(M = €0.67, SD = 1.22).

Material, design, and procedure. We used the same 30 lot-
teries, design, and procedure as in Study 1, except that re-
sponses were incentivized with the BDM method (see
Appendix E for the detailed instructions). Participants took
between 20 and 35 minutes to complete the experiment.

Results

Replicating Pachur and Scheibehenne (2012), the number of
draws participants took before making a pricing decision did
not differ between the WTA and WTP conditions, Ms = 26.1
(SD = 12.9) versus 25.8 (SD = 11.0), t(79) = 0.31, p = .76.
Figure 3 (right panel) shows the average selling and buying
prices, expressed on the 11-point response scale and separately
for the 30 lotteries (the pricing decisions expressed on the
monetary scales are reported in Appendix A). As can be seen,
selling prices substantially exceeded the buying prices,Ms = 6.14
(SD =1.47) versus 4.53 (SD = 1.55), t(79) = 9.67, p = .001,
indicating that the endowment effect also emerged under incen-
tive compatibility. As Fig. 3 shows, the discrepancy between
selling and buying prices was slightly smaller than in Study 1,
with an effect size (point-biserial correlation; Rosenthal, Rosnow,
& Rubin, 2000) of r = .74, relative to r = .85 in Study 1.7

We used the same procedure as in Study 1 to fit the models to
the data. How well did the models perform? As shown in
Table 4, NMalphabeta, CPTalphabeta, andVUMalphabeta, which allow
for buyer–seller differences in both outcome sensitivity and re-
sponse bias, now performed best, closely followed by CPTbeta,
which only allows for buyer–seller differences in response bias.
CPTalphabeta also performed best on the individual level, with the
highest average AIC weight and the highest number of partici-
pants for whom the model showed the best fit. Given that, as
shown in Table 5, the parameter estimates of NMalphabeta and
CPTalphabeta indicated no (or very small) systematic differences
between buyers and sellers in outcome sensitivity (e.g., for
NMalphabeta the median estimates were αWTA = .893 and
αWTP = .866, respectively) but a substantial difference in response
bias, the contribution of buyer–seller differences in response bias

7 The point-biserial correlation r is related to Cohen’s d as r ¼ dffiffiffiffiffiffiffiffi
d2þ4

p ; r = .1,

.3, and .5 represent small, medium, and large effect sizes, respectively

(Cohen, 1988).
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may nevertheless be larger than the one in outcome sensitivity.
These results suggest that the endowment effect may be driven by
multiple mechanisms, and the cognitive modeling approach
applied here seems to be able to disentangle and quantify them.

How did the best fitting parameter estimates capture the
buying and selling prices incentivized using the BDM proce-
dure? Tables 5 (see also Table 11 in Appendix D) shows that
the pattern was similar to the one in Study 1: With the excep-
tion of the models allowing for buyer–seller differences in
choice sensitivity (i.e., DELTAtheta, VUMtheta, NMtheta, and
CPTtheta) and the variants of instance-based learning theory
allowing for differences in decay and retrieval noise (i.e.,
IBLd and IBLsigma), all models indicated systematic differ-
ences between the WTA and WTP conditions (in contrast to
Study 1, however, there was no significant difference in the

parameters for IBLsigma). Together, these results indicate that
the parameter estimates obtained are robust: Study 2 was con-
ducted in a different lab and the monetary outcomes were
shown in a different currency than in Study 1.

Do incentives reduce response bias? As mentioned above,
the BDM procedure has been proposed to minimize strategic
misrepresentation (e.g., Kahneman et al., 1991; Plott & Zeiler,
2005). To test whether our cognitive modeling approach indi-
cates support for this specific effect of the BDM procedure in
the present study, we compared the sizes of buyer–seller dif-
ferences with and without BDM (i.e., Study 2 vs. Study 1) on
the parameters of different models. For instance, consider
CPTalphabeta, which was among the best performing models
in Studies 1 and 2 and which provides estimates for buyer–

Table 4 Model performance in Study 2: Deviance (-2*log likelihood), Akaike information criterion (AIC), Akaike weights, w(AIC), and number of
participants for whom the model showed the best fit (i.e., had the lowest AIC); the values for the three best performing models on the respective measure
are indicated in bold

Model Number of parameters –2*log(L) AIC w(AIC) Count of lowest AIC

M SD

Reinforcement learning models

DELTAphi 4 16,828 17,468 .021 .092 0

DELTAalpha 4 16,816 17,456 .010 .038 1

DELTAtheta 4 17,448 18,088 .011 .055 1

DELTAbeta 5 16,333 17,133 .025 .076 3

DELTAalphabeta 6 16,007 16,967 .031 .092 2

VUMphi 4 17,727 18,367 .009 .036 0

VUMalpha 4 16,261 16,901 .020 .045 0

VUMtheta 4 17,120 17,760 .005 .013 0

VUMbeta 5 15,646 16,446 .038 .056 0

VUMalphabeta 6 15,275 16,235 .064 .131 1

NMalpha 3 16,375 16,855 .031 .071 3

NMtheta 3 17,295 17,775 .010 .028 0

NMbeta 4 15,675 16,315 .066 .104 11

NMalphabeta 5 15,402 16,202 .062 .083 3

Instance-based learning theory

IBLd 3 27,980 28,460 .001 .009 0

IBLsigma 3 27,833 28,313 .016 .113 1

IBLbeta 4 21,779 22,419 .004 .021 0

Cumulative prospect theory

CPTalpha 5 15,684 16,484 .088 .139 11

CPTgamma 5 17,015 17,815 .045 .151 4

CPTdelta 5 15,665 16,465 .115 .207 12

CPTtheta 5 16,529 17,329 .037 .119 3

CPTbeta 6 15,280 16,240 .132 .173 11

CPTalphabeta 7 15,087 16,207 .159 .193 13

Note. DELTA = delta model; VUM = value-updating model; NM = natural-mean model; IBL = instance-based learning theory; CPT = cumulative
prospect theory. The deviance (i.e., –2 * log likelihood) assuming a random choice of one of the response categories is 287.75 * 80 = 23,020
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seller differences in both outcome sensitivity and response
bias. Consistent with the hypothesis that the BDM procedure
specifically affects response bias, a comparison of the reduc-
tion in buyer–seller differences (i.e., αWTA vs. αWTP, and
βWTA vs. βWTP) in Study 2 compared to Study 1 showed that
the effect size of the reduction (though small in an absolute
sense) was considerably larger on the response bias parameter
β (point-biserial correlation r = 0.082) than on the outcome
sensitivity parameter α (r = 0.004). To the extent that the
BDM procedure reduces strategic misrepresentation, our cog-
nitive modeling approach thus makes it possible to track and
quantify this specific effect.

Summary and discussion

The results of Study 2 show that under conditions of in-
centive compatibility there is some evidence that buyer–
seller differences in outcome sensitivity contribute to the
discrepancy between buying and selling prices, as predict-
ed by the loss-aversion account. Still, even under incen-
tive compatibility, there seems to be an influence of stra-
tegic misrepresentation, as models assuming buyer–seller
differences in both response bias and in outcome sensitiv-
ity performed best.

Model recovery: Can the models be discriminated?

The modeling analyses in Studies 1 and 2 showed that more
than one of the candidate models can, in principle, accommo-
date the discrepancies in buying and selling prices. One might
therefore suspect that the models are to some extent able to
mimic each other. Can our approach actually discriminate be-
tween the tested implementations of the candidate accounts of
buyer–seller differences? Further, are there differences in flex-
ibility between the models? For instance, modeling the dis-
crepancy between buying and selling prices via the exponent
of the utility/value function (see Equation 1) or via a nonlinear
probability weighting function (see Equation 12) may bemore
flexible than modeling it via an additive constant (see
Equation 6).

To address these questions, we conducted two model re-
covery studies in which we first generated several data sets for
several models; in each set one of the models was the gener-
ating mechanism (using a particular parameter setting). Then
we fitted this model as well as the other models to each set.
The crucial question was how frequently the data-generating
model would emerge as the one with the best fit. Given that
cumulative prospect theory emerged as the best fitting com-
putational framework across Studies 1 and 2, we focused on
this framework. In our first model recovery study, we included
CPTbeta, CPTalpha, and CPTdelta, as these variants performed
relatively well (see Tables 2 and 4) and allow for a clear-cut

comparison of the distinct mechanisms under investigation.
We thus examine to what extent buyer–seller differences in
response bias, outcome sensitivity, and probability weighting
can actually be told apart.

Our secondmodel recovery analysis compared CPTbeta and
CPTalphabeta, which were consistently among the best
performing models in Studies 1 and 2 (see Tables 2 and 4).
To what extent can a model that assumes buyer–seller differ-
ences only on response bias be discriminated from a model
that additionally assumes differences on outcome sensitivi-
ty—in particular given the empirical finding that the differ-
ences in the estimated outcome sensitivity was rather small
relative to the differences in response bias (see Tables 3 and
5)? Further, as CPTbeta and CPTalphabeta differ in model com-
plexity, is our model evaluation procedure suitable for
distinguishing them?

Method

We used the same procedure to generate the data and subse-
quently evaluate the models in both model recovery studies.

Data generation.We simulated decision makers who provid-
ed buying and selling prices for each of the 30 lotteries used in
Studies 1 and 2. This was done for each of the tested models
(i.e., CPTbeta, CPTalpha, and CPTdelta in the first model recov-
ery study and CPTbeta and CPTalphabeta in the second model
recovery study), using the respective set of median best fitting
parameters obtained in Study 1 (see Table 3). As input for the
models, we used the sampled outcomes of each of the 76
participants in Study 1 (note that depending on the sampled
outcomes, the same set of parameter values can yield different
predictions). Based on the choice probabilities that the respec-
tive model predicted for each of the 11 values on the response
scale for a given lottery, a pricing response was drawn prob-
abilistically. This was repeated 10 times, yielding for each
generating model a total of 76 × 10 = 760 simulated decision
makers (each with 30 selling and 30 buying prices) in each set.
There were three such sets in the first recovery analysis and
two in the second recovery analysis.

Model classification Each of the models was fitted to each set
of simulated pricing decisions using the same estimation pro-
cedure as in Studies 1 and 2. We then determined for each
simulated decision maker which of the tested models per-
formed best. This was done using both AIC and BIC (see
Appendix C). A model was said to be accurately recovered
if it showed, overall, the best performance (in terms of the
percentage of simulated decision makers for whom the model
showed the best fit) for the data set that it had generated.
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Results

Figures 5a and b show for both model recovery analyses
that the parameter values used to generate each set were
recovered with high accuracy by the respective model.
This demonstrates that the model parameters can be iden-
tified rather well (although some CPT parameters are
intercorrelated to some extent; Scheibehenne & Pachur,
2015). For the first model recovery study, Table 6 shows
the percentage of cases (out of the 760 simulated decision
makers in each set) in which each of the three tested
models (CPTbeta, CPTalpha, and CPTdelta) performed best,
separately for the sets generated by each model. The

results using AIC for model classification are shown in
the upper part of Table 6; the results using BIC, in the
lower part. The percentages in the diagonal (shown in
bold) represent correct model recoveries (i.e., where the
mechanism that generated the data also provided the best
account when fitted to the data).

As can be seen from the table, the three models can
be distinguished rather well, and this holds for both AIC
and BIC. For instance, in the set of buying and selling
prices generated by CPTalpha, this model achieved the
lowest (i.e., best) AIC in 88.8% of cases, whereas
CPTbeta and CPTdelta achieved the best performance in
only 7.9% and 3.3% of cases, respectively. These results

Fig. 5 a Density plots showing the distribution of the estimated model
parameters in the first model recovery analysis in the data sets that were
generated by these models.Dotted lines indicate the parameter values that
were used to generate the data. bDensity plots showing the distribution of

the estimated parameters of the two models of the second model recovery
analysis in the data sets that were generated by these models.Dotted lines
indicate the parameter values that were used to generate the data

Psychon Bull Rev (2017) 24:1742–1773 1759



indicate that our modeling approach was well suited to
distinguish whether the discrepancy between buying and
selling prices was driven by differences in response bias,
outcome sensitivity, or probability weighting. Finally,
given that CPTalpha was recovered more frequently when
CPTbeta was the generating mechanism than vice versa
(both for AIC and BIC), modeling discrepancies between
buying and selling prices via the exponent of the value
function may be more flexible than via an additive

constant. Based on these results, it seems unlikely that
the good performance of CPTbeta in Studies 1 and 2 was
due to a higher model complexity that was not taken into
account by AIC (which only considers the number of
free parameters).

The results for the second model recovery study, with
CPTbeta and CPTalphabeta, are shown in Table 7. Note that
using BIC CPTbeta is generally the most frequently recov-
ered model, even in the data set generated by CPTalphabeta.
Using AIC, by contrast, the model that generated the data

Table 6 Results of the first model recovery analysis; percentage of
recoveries for each model in each of the three sets, with correct
recoveries in bold

Model selection criterion Fitted model Generating model

CPTalpha CPTdelta CPTbeta

AIC CPTalpha 88.8% 5.3% 11.2%

CPTdelta 3.3% 73.0% 12.5%

CPTbeta 7.9% 21.7% 76.3%

BIC CPTalpha 91.4% 5.3% 20.4%

CPTdelta 5.3% 82.2% 19.1%

CPTbeta 3.3% 12.5% 60.5%

Note. CPT = cumulative prospect theory; AIC = Akaike information
criterion; BIC = Bayesian information criterion

Table 7 Results of the second model recovery analysis; percentage of
recoveries for each model in each of the three sets, with correct recoveries
in bold

Model selection criterion Fitted model Generating model

CPTbeta CPTalphabeta

AIC CPTbeta 75.8% 42.6%

CPTalphabeta 24.2% 57.4%

BIC CPTbeta 91.6% 67.1%

CPTalphabeta 8.4% 32.9%

Note.NM= natural mean model; CPT = cumulative prospect theory; AIC
= Akaike information criterion; BIC = Bayesian information criterion

Fig. 5 (continued)
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is also the best performing one in the majority of cases.
For this reason, our conclusions on relative model perfor-
mance in Studies 1 and 2 are based on AIC rather than on
BIC. The results using AIC demonstrate that CPTbeta and
CPTalphabeta, despite their overlap in the underlying mech-
anism, can be discriminated with our model comparison
approach. Nevertheless, model recovery was clearly more
accurate for CPTbeta than for CPTalphabeta, and in cases
where CPTalphabeta had generated the data, CPTbeta

showed the best performance on AIC in 42.6% of the
cases. It is therefore possible that in our model compari-
sons of Studies 1 and 2 the support for CPTalphabeta is
underestimated.

General discussion

Past research has offered various accounts of the psycho-
logical mechanisms that might underlie buyer–seller dif-
ferences in pricing decisions. To date, however, there
have been few attempts to test, disentangle, and directly
compare these accounts. In this article, we developed and
applied a formal, quantitative cognitive modeling ap-
proach to empirical pricing decisions of monetary lotteries
obtained by means of an experiential sampling paradigm.
This paradigm also allowed us to examine buyer–seller
differences in learning—a possibility suggested by the
loss-attention account (Yechiam & Hochman, 2013a). To
formalize the candidate accounts, we considered three
computational frameworks that have been used to model
decisions from experience—reinforcement learning,
instance-based learning theory, and cumulative prospect
theory—and implemented the different mechanisms de-
rived from the accounts as model variants within these
computational frameworks.

The first important insight from a quantitative model
comparison was that there are considerable differences in
the models’ ability to capture the data. Within each of the
three computational frameworks, model variants assuming
buyer–seller differences in response bias were consistent-
ly among those showing the best balance between model
complexity and model fit. Evidence for an additional con-
tribution of buyer–seller differences in outcome sensitivi-
ty also emerged, but only when the pricing decisions were
incentivized (Study 2).

Second, across the three computational frameworks in
which we implemented the candidate accounts of buyer–
seller differences, the model variants of cumulative pros-
pect theory performed best, even taking into account their

higher model complexity (using AIC). This finding sug-
gests that buyer–seller differences in valuations from ex-
perience can be accurately captured without considering
cognitive mechanisms that are specific to sequentially
learned information—such as learning and memory ef-
fects. Note that this conclusion also follows when com-
paring the models based on BIC, which punishes more
heavily for model complexity. Although here variants of
a reinforcement learning model perform best (see
Appendix D), it is those of the natural-mean model, which
assumes, as cumulative prospect theory, no distortion
through learning and memory (e.g., recency). Thus, we
are confident that the lack of support for memory and
learning processes in our data is not due to model flexi-
bility issues; nevertheless, future comparisons of compu-
tational models of the endowment effect should also em-
ploy alternative methods, such as out-of-sample predic-
tion (e.g., Busemeyer & Wang, 2000) or Bayesian
methods (e.g., Lee & Wagenmakers, 2013; Pachur,
Suter, & Hertwig, 2017). The lack of evidence for mem-
ory and learning mechanisms is consistent with previous
comparisons of learning models and cumulative prospect
theory (Frey, Mata, & Hertwig, 2015; Glöckner et al.,
2016), whereas in Erev et al. (2010) the latter was
outperformed by learning models.

Finally, in model recovery studies focusing on the best
performing models from Studies 1 and 2, we demonstrate
that with our cognitive modeling approach these formal
implementations of buyer–seller differences can be dis-
criminated rather well. Overall, our results suggest that
to capture the endowment effect in the context of lotteries,
models need to allow, at the very minimum, for buyer–
seller differences in outcome sensitivity and response bi-
as. In the following, we discuss implications of our
modeling approach and findings.

The role of response bias in the endowment effect

In light of the many proposals of how cognitive process-
ing of buyers and sellers might differ, it may seem sur-
prising that we find, in addition to some effect of differ-
ences in outcome sensitivity, evidence for a robust and
substantial contribution of strategic misrepresentation. In
the past, it has been suggested that the use of a Bbuy low,
sell high^ strategy—which we formalized in terms of
response-bias models—resulted from either insufficient
incentivization, misconception, or implicit influences,
where Bcalls for selling behavior might trigger an instinc-
tive reaction (e.g., sell high and buy low)^ (Plott & Zeiler,
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2005, p. 537). Our finding of evidence for models with
buyer–seller differences in response bias even under con-
ditions of incentive compatibility suggests that lack of
understanding of the BDM procedure or implicit, auto-
matic factors, which are less under the decision-maker’s
control, play at least some role. Although the BDM pro-
cedure is a commonly used method for encouraging peo-
ple to state their actual subjective valuations, there is
some evidence that participants do not always fully un-
derstand it (e.g., Cason & Plott, 2014; James, 2007; Safra,
Segal, & Spivak, 1990). Despite due efforts to clearly
explain the procedure to participants, we cannot rule out
that in Study 2 some participants did not completely un-
derstand it. However, our realization of the BDM proce-
dure is consistent with how buying and selling prices
were collected in many previous studies; our data should
thus be comparable to and instructive for those studies.

Probability weighting in valuations from experience

In previous analyses of decisions from experience, one
key topic has been the pattern of probability weighting
suggested by people’s decisions (see Hertwig et al.,
2004). The estimated weighting function parameters in
the best performing variants of cumulative prospect theo-
ry (see Tables 3 and 5) yield an inverse S-shaped curva-
ture (indicated by γ < 1), and thus overweighting of rare
events and some reduced sensitivity to differences in the
probabilities people experienced. This result is consistent
with Kellen et al.’s (2016) systematic analysis of proba-
bility weighting in decisions from experience (see also
Glöckner et al., 2016).

Does this contradict the conclusions of Hertwig et al.
(2004) that in decisions from experience people choose as
if they underweight rare events? Note that the conclusions
by Hertwig et al. are based on a very different definition
of over- and underweighting than those following from
our (and Kellen et al.’s, 2016) estimated probability
weighting function. The probability weighting function
we estimated from people’s buying and selling prices is
based on the probabilities that people actually experi-
enced. Hertwig et al.’s diagnosis of underweighting, by
contrast, referred to the Blatent^ probabilities (i.e., the
objective probabilities underlying the payoff distributions)
of the events; based on the latter definition, people often
had not experienced (or had underexperienced) rare
events in their (small) samples. Hertwig et al.’s
underweighting argument and the present finding of
overweighting are thus not in contradiction. In fact,

Kellen et al. (2016) replicated the choice pattern on the
basis of which Hertwig et al. concluded that rare events
are underweighted, while at the same time estimating a
probability weighting function (based on the experienced
probabilities) from people’s choices that indicates
overweighting of the experienced probabilities.

Loss attention and the endowment effect in valuations
from experience

The models implementing a loss-attention account, in
terms of buyer–seller differences in either choice sensitiv-
ity or learning and memory, did not perform well (relative
to the other models) in capturing people’s buying and
selling prices. This finding might raise the question of
whether differences in choice sensitivity or memory and
learning processes can lead to systematically higher sell-
ing prices than buying prices—the typical endowment ef-
fect—in the first place. For instance, lower choice sensi-
tivity should lead to responses becoming more unsystem-
atic and thus, ceteris paribus, to a regression toward the
mean of the response scale. So is a loss-attention account
of the endowment effect a nonstarter?

Additional analyses, reported in Appendix F, suggest
otherwise. It is shown that buyer–seller differences in
choice sensitivity can lead to the pattern of higher selling
than buying prices as long as the utility function is non-
linear, and the regression effect thus asymmetric around
the mean of the response scale; with a linear utility func-
tion the regression effect is symmetric and differences in
choice sensitivity cannot lead to the endowment effect.
Moreover, the pattern of higher choice sensitivity for
sellers than for buyers (i.e., the prediction of the loss-
attention account) leads to the endowment effect only
when decision makers are risk seeking (i.e., have a con-
vex utility/value function); when decision makers are risk
averse (i.e., have a concave utility/value function), higher
choice sensitivity for buyers than for sellers is required for
the endowment effect to occur. The analyses reported in
Appendix F also elaborate the conditions under which the
account implemented in IBL can give rise to the pattern of
higher selling than buying prices, specifically, that it de-
pends on the skewness of the probability distribution of
the lottery’s outcomes. These insights qualify the ability
of Yechiam and Hochman’s (2013a) loss-attention account
to generate the endowment effect in principle. It should be
kept in mind, however, that the implementations of this
account showed a rather poor model fit for the present
data.
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Overall, the models implementing a loss-attention ac-
count within IBL performed worst. What might be rea-
sons for this result? One possibility is suggested by the
analysis mentioned above (reported in detail in Appendix
F), showing that IBL can produce the endowment effect
only for lotteries with a particular structure. Given the
empirical robustness of the endowment effect (e.g.,
Yechiam, Ashby, & Pachur, in press), it is likely that this
limitation severely restricts the explanatory power of IBL
to account for differences in buying and selling prices.
Second, a more general limitation of IBL might be that
in contrast to the other modeling frameworks, IBL makes
the assumption that the choice rule itself is deterministic
and that probabilistic choice is exclusively due to noise
during memory retrieval (see Equations 8 and 10). It is
possible that this specific assumption gives IBL a disad-
vantage. Additional, exploratory analyses showed that
IBL equipped with a probabilistic ratio-of-strength choice
rule (Luce, 1959) performed considerably better (though
still worse than the model variants of the other computa-
tional frameworks).

Applications of the cognitive modeling approach

The cognitive modeling approach outlined in this article can
be used to complement other, experimental work on the psy-
chological underpinnings of buyer–seller differences in pric-
ing decisions. Various factors that can influence the size of the
endowment effect have been identified, such as ownership,
attachment, experience with trading, or affect (e.g.,
Loewenstein & Issacharoff, 1994; Morewedge et al., 2009;
Peters et al., 2003; Plott & Zeiler, 2005; Strahilevitz &
Loewenstein, 1998; for an overview, see Ericson & Fuster,
2014; Morewedge & Giblin, 2015). The cognitive modeling
approach could be applied to investigate to what extent, for
instance, manipulation of the duration of ownership (e.g.,
Strahilevitz & Loewenstein, 1998) impacts outcome sensitiv-
ity, response bias, or both.

Further, the cognitive modeling approach can be ap-
plied to study individual differences in the endowment
effect. For instance, there is some evidence that the effect
is larger in older than in younger adults (Gächter,
Johnson, & Herrmann, 2010; but see Kovalchik,
Camerer, Grether, Plott, & Allman, 2005), but the cogni-
tive mechanisms underlying such potential age differences
are not yet understood. Fitting computational models
(e.g., variants of cumulative prospect theory) to the sell-
ing and buying prices of older and younger adults would

make it possible to compare the age groups in terms of the
estimated parameter profiles in general, but also in terms
of which buyer–seller difference in the estimated param-
eters best accounts for age differences. The relative per-
formance of candidate models might even differ between
age groups.

Finally, by decomposing selling and buying prices into
various latent cognitive mechanisms, the cognitive modeling
approach could be used to correlate measures of these mech-
anisms with other individual-difference measures, such as
cognitive capacity, physiological measures, and neuroimaging
data (Forstmann, Wagenmakers, Eichele, Brown, & Serences,
2011).

Conclusion

For a long time, research on buyer–seller differences in
pricing decisions has been primarily concerned with test-
ing the reality of the endowment effect and it sensitivity
to various psychological influences, such as ownership,
expectations, or affect. By contrast, relatively little atten-
tion has been paid to the distinction and comparison of
candidate psychological mechanisms mediating buyer–
seller differences in the processing of acquired informa-
tion. We proposed a cognitive modeling approach to for-
malize and contrast various existing accounts of how the
cognitive mechanisms of buyers and sellers might differ.
An analysis using our approach suggests that multiple
mechanisms contribute to buyer–seller differences in pric-
ing and can be disentangled by our cognitive modeling
approach. The results to some extent support the loss-
aversion account, but they also reveal a substantial con-
tribution of strategic misrepresentation, even when deci-
sions are incentivized. A minimal assumption required to
model buying and selling prices of lotteries it is thus that
there are buyer–seller differences in outcome sensitivity
and response bias. We found no evidence that sellers
show more accurate learning or response selection pro-
cesses than buyers due to loss attention.
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Appendix A

Table 8 Lotteries used in the studies, their expected values (EV), and average willingness-to-accept (WTA) and willingness-to-pay (WTP) valuations

Lottery p o1 o2 o3 o4 o5 EV Study 1 Study 2

WTA WTP WTA WTP

1SL 35/36 4 0 - - - 3.89 3.45 2.39 3.21 2.63

2SH 11/36 16 0 - - - 4.89 7.60 3.37 6.02 3.06

3SL 29/36 2 0 - - - 1.61 1.44 0.84 1.29 0.99

4SH 7/36 9 0 - - - 1.75 3.99 1.36 2.9 1.77

5SL 34/36 3 0 - - - 2.83 2.50 1.58 2.32 1.76

6SH 18/36 6.5 0 - - - 3.25 3.92 1.60 2.95 2.01

7SL 32/36 4 0 - - - 3.56 3.17 2.06 2.80 2.24

8SH 4/36 40 0 - - - 4.44 11.89 3.37 9.10 4.20

9SL 34/36 2.5 0 - - - 2.36 2.17 1.33 1.85 1.45

10SH 14/36 8.5 0 - - - 3.31 4.59 2.08 3.93 2.26

11SL 33/36 2 0 - - - 1.83 1.56 1.02 1.47 1.13

12SH 16/36 5 0 - - - 2.22 2.99 1.20 2.26 1.26

13GH 0.2 5 9 27 40 45 25.2 28.63 17.11 25.85 19.25

14GL 0.2 14 22 26 28 36 25.2 26.04 18.72 24.56 20.82

15GH 0.2 8 13 23 44 55 28.6 31.50 19.32 28.33 21.75

16GL 0.2 18 25 29 31 40 28.6 29.61 22.54 28.04 24.57

17GH 0.2 13 19 26 57 66 36.2 40.83 23.46 34.60 26.52

18GL 0.2 25 29 37 41 49 36.2 37.09 30.15 36.55 32.41

19GH 0.2 6 17 33 64 89 41.8 47.06 24.89 42.00 30.07

20GL 0.2 18 27 37 50 63 39 40.74 29.96 39.60 32.57

21GH 0.2 8 25 29 77 89 45.6 50.84 25.80 40.60 30.17

22GL 0.2 18 33 45 54 71 44.2 49.17 31.18 45.03 35.95

23GH 0.2 10 25 47 73 81 47.2 54.19 25.98 47.63 36.36

24GL 0.2 27 33 45 54 71 46 49.12 36.09 46.53 39.49

25GH 0.2 15 31 53 80 91 54 59.30 35.7 51.58 42.93

26GL 0.2 27 33 50 61 79 50 54.51 39.11 51.44 44.88

27GH 0.2 23 37 74 81 91 61.2 68.90 43.49 63.29 50.46

28GL 0.2 39 51 60 67 82 59.8 62.42 48.68 60.12 52.49

29GH 0.2 31 59 71 89 97 69.4 71.12 48.72 69.36 56.33

30GL 0.2 55 60 72 81 88 71.2 73.76 62.82 72.2 65.44

Note. Lotteries taken from Slovic, Griffin, and Tversky (1990) and Ganzach (1996) are indicated by the superscript letters S and G , respectively. The
second superscript letter indicates whether the lottery was high (H) or low (L) variance. For the Slovic et al. lotteries, the probability p refers to the
probability of outcome 1, o1; for the Ganzach lotteries, all five outcomes were equally probable (i.e., p = .2)
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Appendix B

Parameter estimation using maximum likelihood

For each participant, we identified the set of parameter
values where the likelihood of the predictions of model,
given the observed choices of a value on the response
scale, was maximized. That is, the parameters mini-
mized the maximum likelihood measure (summed across
N = 30 selling prices + 30 buying prices = 60 valua-
tions):

G2 ¼ −2
XN

n¼1
ln yð Þ½ � ð14Þ

where fj(y) represents the probability with which the
strategy predicts the observed choice y on the response
scale (see Fig. 1) for lottery j.

Parameter restrictions in the model estimation

Based on previous investigations of the models (e.g.,
Ashby & Rakow, 2014 ; Pachu r , He r tw ig , &
Wolkewitz, 2014; Scheibehenne & Pachur, 2015;
Steingroever et al., 2013a; Yechiam & Busemeyer,
2008), the parameters of the reinforcement learning
model variants (i.e., the delta model, the value-
updating model, and the natural-mean model), instance-
based learning theory, and cumulative prospect theory
were set to the ranges indicated in Table 9 in the model
estimation. It was ensured that the ranges were set such
that estimates at the boundary of the parameter ranges
would be minimal.

Appendix C

Model evaluation and comparison with AIC, BIC,
and model weights

The AIC is defined as

AIC ¼ G2 þ 2p ð15Þ
where p is the number of free parameters in the model. The
BIC is defined as

BIC ¼ G2 þ p� ln nð Þ ð16Þ
with p again being the number of free parameters in the model;
n is the number of data points that enter the likelihood estima-
tion. The BIC typically penalizes a model more strongly for
free parameters than the AIC. Moreover, it assumes that the
true generating model is among the set of candidate models,
whereas the AIC does not assume that any of the candidate
models is true (for discussion of the relative merits of AIC and
BIC, see Burnham & Anderson, 2002; Kass & Raftery, 1995;
Lewandowsky & Farrell, 2010).

In addition to AIC and BIC, we calculated Akaike weights,
w(AIC), and BIC weights, w(BIC), which conveniently trans-
form AIC and BIC values, respectively, into conditional prob-
abilities of each candidate model given the data among all K
models compared (e.g., Wagenmakers & Farrell, 2004).
Specifically, they are calculated as:

w ICð Þ ¼
exp −

1

2
Δ ICð Þ

� �
XK
k¼1

exp −
1

2
Δk ICð Þ

� � ð17Þ

where IC is the respective information criterion (i.e., AIC or BIC)
andΔ(IC) is the difference between a given model and the best
performing model on the respective information criterion.

Table 9 Parameter restrictions for the maximum likelihood estimation of the model parameters

Model Model parameter

Recency
(ϕ)

Outcome sensitivity
(α)

Choice sensitivity
(θ)

Response bias
(β)

Decay
(d)

Noise (σ) Probability sensitivity
(γ)

Elevation
(δ)

DELTA [0, 1] [0, 2] [0, 10] [-11, 11] – – – –

VUM [0, 3] [0, 2] [0, 10] [-11, 11] – – – –

NM – [0, 2] [0, 10] [-11, 11] – – – –

IBL – – – [-11, 11] [0, 1] [0.01, 1.5] – –

CPT – [0, 2] [0, 10] [-11, 11] – – [0, 2] [0, 5]

Note. DELTA = delta model; VUM = value-updating model; NM = natural-mean model; IBL = instance-based learning theory; CPT = cumulative
prospect theory
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Appendix D

Table 10 Model performance in Studies 1 and 2 in terms of the Bayesian information criterion (BIC), the BIC weights, w(BIC), and the number of
participants for whom the model showed the lowest BIC; the values for the three best performing models on each measure are indicated in bold

Model Number of parameters Study 1 Study 2

BIC w(BIC) Count of lowest BIC BIC w(BIC) Count of lowest BIC

M SD M SD

Reinforcement learning models

DELTAphi 4 18,671 .005 .025 0 19,541 .009 .028 0

DELTAalpha 4 18,394 .028 .113 2 19,529 .018 .073 3

DELTAtheta 4 19,807 .010 .060 2 20,161 .020 .101 2

DELTAbeta 5 18,374 .049 .153 5 19,724 .027 .096 3

DELTAalphabeta 6 18,670 .034 .127 2 20,076 .015 .058 1

VUMphi 4 20,939 .004 .029 1 20,439 .012 .051 0

VUMalpha 4 17,880 .032 .095 2 18,974 .027 .052 1

VUMtheta 4 19,525 .011 .055 1 19,832 .007 .017 0

VUMbeta 5 17,687 .072 .121 3 19,036 .031 .045 0

VUMalphabeta 6 18,035 .043 .089 1 19,344 .039 .117 3

NMalpha 3 17,407 .062 .144 7 18,410 .106 .181 12

NMtheta 3 19,041 .011 .049 1 19,329 .036 .088 3

NMbeta 4 17,212 .166 .197 15 18,387 .137 .199 14

NMalphabeta 5 17,597 .070 .107 4 18,793 .071 .122 3

Instance-based learning theory

IBLd 3 30,080 < .001 .002 0 30,015 .005 .030 0

IBLsigma 3 30,056 < .001 .003 0 29,867 .025 .133 3

IBLbeta 4 21,992 .018 .114 1 24,491 .007 .043 0

Cumulative prospect theory

CPTalpha 5 17,764 .124 .212 12 19,075 .091 .165 8

CPTgamma 5 20,797 .005 .018 0 20,406 .040 .140 3

CPTdelta 5 17,996 .128 .219 12 19,055 .129 .237 13

CPTtheta 5 19,437 .007 .026 0 19,919 .027 .082 2

CPTbeta 6 17,906 .092 .163 5 19,349 .082 .175 5

CPTalphabeta 7 18,400 .030 .055 0 19,834 .040 .077 1

Note. DELTA = delta model; VUM = value–updating model; NM = natural-mean model; IBL = instance–based learning theory; CPT = cumulative
prospect theory. For the aggregate BIC, n = 60 * 76 (see Equation 16). For the BIC analysis on the individual level (i.e., BIC weights, count of lowest
BIC), n = 60
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Table 11 Proportion of participants showing higher values on the respective parameter in the seller (WTA) condition than in the buyer (WTP)
condition in Study 1; proportions differing significantly from .5 (based on χ2 tests) are in bold

Model Model parameter

Recency
(ϕ)

Outcome sensitivity
(α)

Choice sensitivity
(θ)

Response bias
(β)

Decay
(d)

Noise
(σ)

Probability sensitivity
(γ)

Elevation
(δ)

Reinforcment learning models

DELTAphi .908 – – – – – – –

DELTAalpha – .961 – – – – – –

DELTAtheta – – .368 – – – – –

DELTAbeta – – – .920 – – – –

DELTAalphabeta – .408 – .842 – – – –

VUMphi .605 – – – – – – –

VUMalpha – .974 – – – – – –

VUMtheta – – .408 – – – – –

VUMbeta – – – .974 – – – –

VUMalphabeta – .474 – .855 – – – –

NMalpha – .974 – – – – – –

NMtheta – – .474 – – – – –

NMbeta – – – .987 – – – –

NMalphabeta – .500 – .842 – – – –

Instance-based learning theory

IBLd – – – – .395 – – –

IBLsigma – – – – – .250 – –

IBLbeta – – – .987 – – – –

Cumulative prospect theory

CPTalpha – .987 – – – – – –

CPTgamma – – – – – – .697 –

CPTdelta – – – – – – – .960

CPTtheta – – .461 – – – – –

CPTbeta – – – .987 – – – –

CPTalphabeta – .579 – .724 – – – –

Note. DELTA = delta learning model; VUM = value-updating model; NM = natural mean model; IBL = instance-based learning theory; CPT =
cumulative prospect theory
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Appendix E

Instructions of the Becker-DeGroot-Marschak (BDM)
procedure in Study 2

The following instruction (translated from German) was pre-
sented to participants before they started the valuation tasks
(variations between the seller and buyer conditions are shown
in brackets):

At the end of the experiment there will be two auc-
tions. One of the lotteries for which you indicated a
[minimum selling price/maximum buying price] will
be randomly selected. A price offer for this lottery
will be drawn randomly. If the price offered is the

same or [higher/lower] than the price you indicated,
an exchange of the lottery will take place at that
price: You will [sell/buy] the right to play the lottery
and [receive/pay] the price, which will be [added to/
subtracted from] your account. If the price offered is
[lower/higher] than the price you indicated, there
will not be an exchange of the lottery—that is, you
[will keep the right to play the lottery. The lottery
will be played out once and the outcome will be
added to your account/will not pay the price and will
not have the right to play the lottery]. It is therefore
important that you indicate precisely how much you
value the individual lottery. Otherwise, there is a
good possibility that you will lose money at the
auctions.

Table 12 Proportion of participants showing higher values on the respective parameter in the seller (WTA) condition than in the buyer (WTP)
condition in Study 2; proportions differing significantly from .5 (based on χ2 tests) are in bold

Model Model parameter

Recency
(ϕ)

Outcome
sensitivity
(α)

Choice
sensitivity
(θ)

Response
bias (β)

Decay
(d)

Noise
(σ)

Probability
sensitivity
(γ)

Elevation
(δ)

Reinforcement learning models

DELTAphi .825 – – – – – – –

DELTAalpha – .863 – – – – – –

DELTAtheta – – .438 – – – – –

DELTAbeta – – – .775 – – – –

DELTAalphabeta – .450 – .738 – – – –

VUMphi .525 – – – – – – –

VUMalpha – .875 – – – – – –

VUMtheta – – .363 – – – – –

VUMbeta – – – .813 – – – –

VUMalphabeta – .500 – .713 – – – –

NMalpha – .888 – – – – – –

NMtheta – – .388 – – – – –

NMbeta – – .850 – – – – –

NMalphabeta – .538 – .713 – – – –

Instance-based learning theory

IBLd – – – – .538 – – –

IBLsigma – – – – – .425 – –

IBLbeta – – – .875 – – – –

Cumulative prospect theory

CPTalpha – .863 – – – – – –

CPTgamma – – – – – – .625 –

CPTdelta – – – – – – – .875

CPTtheta – – .400 – – – – –

CPTbeta – – – .825 – – – –

CPTalphabeta – .588 – .675 – – – –

Note. DELTA = delta model; VUM = value-updating model; NM = natural-mean model; IBL = instance-based learning theory; CPT = cumulative
prospect theory
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Appendix F

The left panel in the top row of Fig. 6 plots the predic-
tions of the simplest model implementing a choice-
sensitivity account, NMtheta (which is equivalent to an
expected-utility model), fitted to the data; it is apparent
from the figure that the model can reproduce the quali-
tative pattern of the endowment effect. How does the
model produce this pattern, given that buyer-seller differ-
ences in choice sensitivity should primarily lead to val-
uations that differ in their amount of regression toward
the mean of the response scale? Further analyses re-
vealed that the ability of buyer–seller differences on the
choice sensitivity parameter θ to lead to systematically
higher selling than buying prices depends on the out-
come sensitivity parameter α. The right panel in the
top row of Fig. 6 plots the predictions of a variant of
NMtheta (fitted to the data of Study 1) in which the utility
function is set to be linear (i.e., α = 1). As the panel
shows, this model does not generate the endowment ef-
fect and the estimated buyer–seller differences in choice
sensitivity only produce different degrees of regression
toward the mean (with the effect being less pronounced
for selling than for buying prices). This indicates that to
produce systematically higher selling than buying prices
from buyer–seller differences in choice sensitivity, out-
come sensitivity needs to be allowed to deviate from
linearity.

To further illustrate how NMtheta can produce the en-
dowment effect, the panel in the second row of Fig. 6
shows for this model the individual estimates for the
choice sensitivity and outcome sensitivity parameters in
Study 1. Specifically, the parameters θWTA (black dots)
and θWTP (gray triangles), respectively, are plotted
against parameter α. It can be seen that when α is higher
than one (i.e., risk seeking participants), the values of
θWTA are higher than the values of θWTP; when α is
lower than one (risk averse participants), by contrast,
the values of θWTA are lower than the values of θWTP.
Because of this dependency, α and θWTA are positively
correlated (Spearman rank correlation rs = .75, p = .001),
whereas α and θWTP are negatively correlated (rs = –.71,
p = .001).

The consequences of these buyer–seller differences in
choice sensitivity are further demonstrated in the third
row of Fig. 6, which plots the predicted buying and
selling prices of NMtheta separately for the participants
in the highest (left panel) and lowest (right panel) quar-
tiles of the distribution of α (with ranges of α = 1.03–
2.0 and α = 0.01–0.52, respectively)—that is, risk seek-
ing and risk averse participants, respectively. For risk
seeking participants (α > 1), regression toward the mean
pulls the valuations down toward the mean of the

response scale, leading to lower choice sensitivity for
buying than for selling prices to accommodate the en-
dowment effect. For risk averse participants (α < 1),
regression toward the mean pulls the valuations up to-
ward the mean of the response scale, leading to lower
choice sensitivity for selling than for buying prices.
Because overall, participants were risk averse (i.e., α <
1; see Tables 3 and 5), the median estimated choice
sensitivity was lower for sellers than for buyers. The
prediction of the loss attention account on buyer–seller
differences in choice sensitivity can thus produce the
endowment effect only when participants are risk
seeking.

What about the models implementing a loss-attention
account within instance-based learning theory? Can they,
in principle, also produce the endowment effect? The
panels in the bottom row of Fig. 6 show the average
(across participants) predictions of IBLd and IBLsigma

(based on the best fitting parameters) as a function of
each lottery’s expected value. In IBLd and IBLsigma,
buyers and sellers are assumed to differ in memory
decay and the amount of noise in the retrieval of expe-
rienced instances, respectively. Despite their poor over-
all performance (see Tables 2 and 4), both models can
to some extent produce higher selling than buying
prices. This only seems to be the case for some of the
lotteries, however. Further analysis revealed that higher
selling prices were only produced for lotteries in which
the outcomes occurred with unequal probabilities (see
Appendix A); for lotteries in which all outcomes are
equally probable, the models were unable to generate
systematically higher selling than buying prices. The
reason is as follows. The effect of the memory decay
parameter (i.e., d) and the noise parameter (i.e., σ) in
IBL is that they bias the retrieval probability of out-
comes. Specifically, both lower d and lower σ increase
the probability that the more likely outcome is retrieved,
thus affecting the evaluation of the lottery. When in
lotteries with asymmetric probabilities the more proba-
ble outcome is also the more attractive one (which was
the case in most lotteries investigated; see Appendix A),
a systematically higher evaluation can be produced by
assuming lower decay or lower noise. When all out-
comes are equally probable, by contrast, differences in
d or σ cannot produce systematically different valua-
tions between buyers and sellers.

In summary, these analyses highlight how and under which
conditions the endowment effect can, in principle, be pro-
duced by buyer-seller differences in the accuracy of response
construction (i.e., choice sensitivity) or memory processes. A
loss-attention account is thus to some extent able to generate
the endowment effect, as hypothesized by Yechiam and
Hochman (2013a).
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Fig. 6 Model predictions for
individual lotteries, plotted
against their expected values, for
the natural-mean model (NM)
allowing for buyer–seller
differences in choice sensitivity
with a nonlinear and nonlinear
utility function (left and right
panel, respectively, in the first
row); parameter intercorrelation
between the outcome sensitivity
parameter (alpha) and the choice
sensitivity parameter (theta) for
NMtheta (second row); model
predictions for individual
lotteries, plotted against their
expected values, for NMtheta

separately for participants with
high and low values on the alpha
parameter (left and right panel,
respectively, in the third row);
model predictions for the
individual lotteries, plotted
against their expected values, for
instance-based learning theory
(IBL) allowing for buyer–seller
differences in decay (left panel in
the fourth row) and allowing for
buyer-seller differences in
retrieval noise (right panel in the
fourth row).
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