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How do people make preferential choices in situations where their cognitive capacities are limited? Many
studies link the manipulation of cognitive resources to qualitative changes in preferences. However, there
is a widely overlooked alternative hypothesis, namely, that a reduction in cognitive capacities leads to an
increase in choice inconsistency. We developed a mathematical model and followed a hierarchical
Bayesian estimation approach to test to what extent a reduction in cognitive capacities leads to a shift in
preference or an increase in choice inconsistency. Using a within-subject n-back task to manipulate
cognitive load, we conducted three experiments across different choice domains: risky choice, temporal
discounting, and strategic interaction. Across all three domains, results show that a reduction in cognitive
capacities predominantly affected participants’ level of choice consistency rather than their respective
preference. These results hold on an individual and a group level. In sum, our approach and the
mathematical model we used provide a rigorous and general test of how reduced cognitive capacities
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affect people’s decision-making.
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In many situations people are distracted, stressed, tired, or
occupied with several things at the same time. These characteris-
tics are often not matched in laboratory studies in which partici-
pants are able to direct all their attention to the task given by the
experimenter. Therefore, researchers in psychology and economics
have recently tried to better understand if and how a reduction in
cognitive capacities affects behavior across a wide range of tasks.
Prominent examples include research on risky (economic) choices
(Benjamin, Brown, & Shapiro, 2013; Deck & Jahedi, 2015; Free-
man & Muraven, 2010), trade-offs between short-term and long-
term rewards (Deck & Jahedi, 2015; Ebert, 2001; Hinson, Jame-
son, & Whitney, 2003; Joireman, Balliet, Sprott, Spangenberg, &
Schultz, 2008), and strategic interaction games (Cappelletti, Giith,
& Ploner, 2011; Halali, Bereby-Meyer, & Meiran, 2014; Schulz,
Fischbacher, Thoni, & Utikal, 2014). The present work examines
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how a reduction in cognitive capacities affects decision making
across these three major preferential choice domains. Although the
three domains are grounded in different theories and build on
different hypotheses about which cognitive resources are required
to solve a given task, there is a striking similarity in the basic
assumption that reduced cognitive resources can lead to systematic
changes in people’s preferences regarding risk, time, or fairness.

There is, however, a plausible alternative hypothesis to a sys-
tematic preference shift: A reduction in cognitive capacities might
lead to an increase in choice inconsistencies; for example, because
people pay less attention to the stimuli, they are less precise in
integrating the stimulus information, or they make more random
choices when implementing their decisions. An increase in incon-
sistency can easily be mistaken for a systematic preference shift.
For example, when diminished cognitive resources lead to a higher
probability of choosing an (unhealthy) cheesecake over a (more
healthy) fruit salad (Shiv & Fedorikhin, 1999), it might be due to
a genuine change in preference for the immediate (unhealthy)
reward but it might also be due to an increase in inconsistency: For
a person who usually chooses the healthy fruit, higher rates of
inconsistency will inevitably lead to a higher probability of choos-
ing the inferior alternative (i.e., the unhealthy food).

An increase in choice inconsistency is a plausible alternative
hypothesis when taking into account two closely related lines of
research. The first is the effect of cognitive load in the domain of
reasoning and problem solving in general (De Neys, 2006; Law,
Logie, & Pearson, 2006; Meiser, Klauer, & Naumer, 2001; Phil-
lips, Gilhooly, Logie, Della Sala, & Wynn, 2003). In these studies,
participants had to solve math or logic problems while cognitive
capacities were taxed with a secondary task. Performing a second-
ary task increased the number of errors committed or reduced the
number of problems solved compared to a baseline condition. Just
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as a reduction in cognitive capacities can impair participants’
abilities to solve problems, it could also impair participants’ per-
formance in preferential choices. The second line of research has
explored the link between intelligence or general cognitive abili-
ties and preferential choices in correlative studies. Here a similar
debate exists on whether general cognitive abilities are linked to
preferences such as risk aversion or temporal discounting (Burks,
Carpenter, Goette, & Rustichini, 2009; Dohmen, Falk, Huffman, &
Sunde, 2010; Shamosh et al., 2008). Andersson, Tyran, Weng-
strom, and Holm (2013) used a sophisticated experimental design
to show that higher cognitive abilities can lead to both more or less
risk taking. Thus, the authors concluded that cognitive abilities are
related to choice consistency rather than to systematic differences
in risk preference. These and other correlative findings make use
of interindividual differences and usually use a mixture of cogni-
tive skill measures. Although this does not provide a causal link
between cognitive capacities and choice consistency, it further
motivates the examination of cognitive load as a state manipula-
tion of choice consistency.

Assessing choice inconsistencies in a preferential choice task
requires assumptions about the choice process. Using a determin-
istic utility function to model preferential choices leaves no room
for inconsistencies: People should always choose the option that
maximizes (expected) utility. However, for a long time, research-
ers in decision making have emphasized that choices are not
deterministic and that decision makers violate deterministic utility
models on a regular basis (Mosteller & Nogee, 1951). One com-
mon solution in the risk literature is the application of a stochastic
link function (Birnbaum & Bahra, 2012; Hey, 1995; Rieskamp,
2008; Wilcox, 2015).

A stochastic link function builds a bridge between deterministic
utility models and the stochastic empirical nature of preferential
choices. A trembling hand error, as an example of the fixed utility
class, adds a certain probability of committing a choice error that
means not choosing the option with the highest subjective utility
(Harless & Camerer, 1994). Alternatively, random utility models,
such as the probit choice models (Hey & Orme, 1994; Thurstone,
1927), assume that the utility of a choice option is not fixed but
varies following a specific distribution. When making a choice,
people will always choose the option with the momentarily larger
utility; however, due to the variability of the utility, choice incon-
sistencies across many choices can result. The predicted choice
probability of a random utility model is a function of the average
utility difference of the considered choice options. Both fixed
utility and random utility models predict that choices will vary
across nearly identical choice situations (see Rieskamp, 2008).
Therefore, for simplicity throughout this article, we will use the
term choice inconsistency without preferring either of the two
utility frameworks. In a preferential choice task, choice inconsis-
tencies depend on the assumption of a given utility specification.
Thus, in the context at hand, the consistency hypothesis states that
reduced cognitive capacities increase the chance of choosing an
inferior option, that is, an option with lower (average) utility as
defined by the utility function.

We claim that refraining from a stochastic choice model—as is
often done in studies of reduced cognitive capacities—can lead to
unjustified conclusions. To avoid ambiguity and to determine
whether the effect of a cognitive capacity reduction can be attrib-
uted to a shift in preference, an increase in inconsistencies, or both,

we propose a general mathematical model framework. This frame-
work maps onto different domains as well as different utility
specifications. In each of the three domains we investigate,
namely, risky choice, temporal discounting, and the ultimatum
game, we use different utility functions to capture preferences in
the respective domains and stochastic choice models to capture
choice consistency. In this way, we demonstrate that our conclu-
sions are generalizable across different domains, utility functions,
and utility frameworks. We continue with a closer examination of
decision-making research and cognitive capacity reduction manip-
ulations in the respective areas.

Risky Choice

Risk-taking behavior has been assessed in a wide range of
everyday behavior as well as experimental tasks (e.g. Charness,
Gneezy, & Imas, 2013; Dohmen et al., 2011). A well-established
way to measure risk preferences is to present choices between
risky gambles that differ with respect to outcomes and outcome
probabilities. For example, a choice could be between a sure
option of receiving $10 or a risky option of receiving $15 with a
probability of 75% and nothing otherwise. People commonly like
high expected values of outcomes (i.e., returns) but do not like
high variance of outcomes (i.e., risk; e.g., Pratt, 1964). By provid-
ing multiple pairs of gambles with different expected values and
variances, the decision maker has to make repeated trade-offs
between expected values and variances, which allows an estima-
tion of individual utility functions, thereby characterizing people’s
risk attitudes. In general, the more concave the utility curvature,
the more risk averse a person is.

One way to model a concave utility function is with a power
function:

Ulx) = 2P, ()]

where x is the objective outcome and 3 the subjective risk pref-
erence parameter. 3 values below 1 lead to a concave utility
function representing risk aversion and 3 values above 1 lead to a
convex utility function and hence risk-seeking behavior. The
power utility function has been rejected on empirical grounds
many times, which led to the development of rank-dependent
utility models, of which arguably the most prominent is cumulative
prospect theory (Tversky & Kahneman, 1992). Cumulative pros-
pect theory also makes use of a power utility function, but it adds
an editing phase to distinguish gains from losses as well as the
assumption of loss aversion and probability weighting. Using only
gambles in the gain domain, cumulative prospect theory as origi-
nally stated in Tversky and Kahneman (1992) has just one more
parameter than the power utility function. This parameter governs
the weighting function that transforms probabilities into subjective
decision weights as follows:

.
@+ - p)‘Y)(V‘Y)'

Finally, a different way to model risk preferences is to assume
a linear utility function but to introduce a bias term (Stewart,
Reimers, & Harris, 2014). The core of this idea can be traced back
to mean-variance models in the financial literature that were
shown to approximate concave utility functions under certain
assumptions (Levy & Markowitz, 1979). Here we further simpli-
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fied the model by assuming equal variance differences between
gambles (for details see the Method section). This leads to an
expected value model with one free parameter that captures a
choice bias for the riskier or safer of two options,

EVriskier - EVsafer + B (3)

Typical studies in the domain of reduced cognitive capacities in
risky choice, however, rarely estimate utility functions (e.g., Ben-
jamin et al., 2013; Deck & Jahedi, 2015; Freeman & Muraven,
2010). For example, in the study by Deck and Jahedi (2015),
participants repeatedly chose between risky gambles and safe
outcomes. The risky gamble was a 50-50 chance to win either a
high or a low amount of money and the alternative safe outcome
had an expected value in between these two outcomes. Similar
decisions were also made in the loss domain. The authors manip-
ulated cognitive capacity with a dual-task design, in which partic-
ipants had to remember either a one-digit (low cognitive load) or
an eight-digit (high cognitive load) number during each choice.
The observed data indicated that on average across all participants
in the gain domain, cognitive load significantly decreased the
choice share of the risky gamble over the safe option from 59.5%
to 52.7%. Here, as in other studies mentioned above, our obser-
vation about the ambiguity of the reported effect applies: In line
with the interpretation of the studies’ authors, the data can be
explained as a genuine shift in risk preferences, but alternatively an
increase in choice inconsistencies can account for observed choice
proportions closer to a random choice level of 50%. To resolve this
ambiguity, both preference and choice consistency have to be
assessed conjointly, which can be done by applying the quantita-
tive model we present below.

Temporal Discounting

In general, people prefer immediate over delayed gratification,
as can be seen by measured (implicit) discount rates (Frederick,
Loewenstein, & O’Donoghue, 2002). From an economic perspec-
tive, it makes sense to discount future outcomes (Fisher, 1930),
and the discount rate can be partly reflected in a market’s interest
rate. However, it has been experimentally shown that people
sometimes act as if they were discounting future outcomes more
strongly than the market interest rate would suggest. Such prefer-
ences for immediate rewards are often explained by impulsive
behavior or self-control problems (O’Donoghue & Rabin, 2000).
To elicit people’s time preferences, it is common to let people
choose between different monetary amounts that are received at
different time points in the future. Here, people have to trade off
between sooner smaller amounts and later larger amounts of
money. In this paradigm, the (implicit) discounting rate is inferred
by setting up a discounting function that is consistent with most
choices. Likewise, it is possible to ask people directly for the
present value of a certain amount that is received at a specific time
point in the future. From the stated present value, a discounting
rate can be determined that characterizes a person’s time prefer-
ence.

When dealing with monetary amounts that occur at different
time points, economic theory prescribes an exponential discount-
ing function as the normative standard (Samuelson, 1937),

OLSCHEWSKI, RIESKAMP, AND SCHEIBEHENNE

outcome

exp(k - delay)’ @
where the discounting factor k represents the discounting of future
outcomes, with larger values for k implying stronger discounting
and giving more weight to immediate outcomes. In contrast, other
functions have been suggested to describe people’s observed time
preferences, with the one-parameter hyperbolic discounting (Ain-
slie, 1975) function as a prominent example:

outcome
1 + k- delay’ )

where k has a similar interpretation as before. Psychologically, a
larger k in hyperbolic discounting is often interpreted as more
impulsive behavior. In general, hyperbolic discounting often de-
scribes empirical time preferences better than exponential dis-
counting (Frederick et al., 2002). More recently, several different
and more complex discounting functions have been discussed on
empirical, theoretical, or neuroscientific grounds (Ebert & Prelec,
2007; McClure, Ericson, Laibson, Loewenstein, & Cohen, 2007;
Peters, Miedl, & Biichel, 2012). Here, as one representative of this
class of models, we examined an alternative two-parameter hyper-
bolic discounting function from Green and Myerson (2004):

outcome 6)
(1 + k- delay)®’

where k again captures discounting and o is a parameter that
captures nonlinear scaling of the denominator. If the scaling pa-
rameter is smaller than 1, this implies weaker discounting com-
pared with the one-parameter hyperbolic model.

Typically, studies examining time preferences under reduced
cognitive capacities used repeated binary choices between imme-
diate and delayed rewards (Deck & Jahedi, 2015; Ebert, 2001;
Hinson et al., 2003; Joireman et al., 2008). In Hinson, Jameson,
and Whitney (2003), participants made choices while under high
cognitive load (i.e., remembering letters) or low cognitive load
(i.e., pressing letters after each decision). The authors found that
participants’ hyperbolic discounting factors were larger under high
compared with low cognitive load. Hence, the authors concluded
that cognitive load leads to a shift in time preferences. However,
again, it could also be that cognitive load increases choice incon-
sistency. This idea has been tested by Franco-Watkins, Pashler,
and Rickard (2006), who reanalyzed the data of Hinson et al.
(2003) and argued that there was no shift in time preference, but
only an increase in inconsistencies that drag choice proportion
closer to 50% (from 25% to 30%). This finding was further
corroborated by an additional experiment of the same authors
(Franco-Watkins, Rickard, & Pashler, 2010). To resolve this de-
bate, it is necessary to rigorously test the preference-shift hypoth-
esis against the choice-consistency hypothesis. This is possible
with the mathematical model presented below.

Fairness Preference

Preference for fairness develops early in life, exists in human
beings as well as in animals, and is claimed to have an important
impact on the development of cooperation (Brosnan & de Waal,
2014; Knafo, Zahn-Waxler, Van Hulle, Robinson, & Rhee, 2008).
Fairness preferences in economics and psychology are often stud-
ied in the domain of strategic interaction games. Typical examples
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are the ultimatum game (Giith, Schmittberger, & Schwarze, 1982)
and the dictator game (Kahneman, Knetsch, & Thaler, 1986). In
the ultimatum game, one person, the proposer, decides how to
distribute a given outcome and the other person, the responder, can
decide to accept or to reject the distribution. If the responder
accepts, then both players get an outcome according to the pro-
posed distribution, but if the responder rejects, both players get
nothing. In the dictator game, again, one participant decides how
to distribute a given amount of money between him- or herself and
another person. However, the other person has no choice and only
passively receives the distributed amount. Typically in these
games, dictators choose to give a nontrivial share to the receiver,
and most responders in the ultimatum game reject distributions
that give less than 20% of the original outcome (Camerer &
Thaler, 1995).

This unselfish behavior has often been explained by fairness
preferences, according to which people do not care only about their
personal monetary outcomes but are also concerned about the
monetary outcomes for others. One way to model social prefer-
ences is to define a utility function that captures the personal
monetary outcome but also the outcome for another person. This
idea has been formalized by Fehr and Schmidt (1999) in their
inequity aversion utility function, defined as

U(x,y) =x — a-max(0,y — x) — B - max(0,x — y), (@)

where the utility U for a person is the sum of that person’s own
outcome, x, and the difference between that outcome and the
outcome of another person, y. There are two free parameters: «, a
measure of aversion to inequity disadvantageous to oneself or
first-order inequity aversion; and (3, a measure of aversion to
inequity that favors oneself, or second-order inequity aversion.
The authors claim that both types of inequity matter, but that
second-order inequity aversion has less weight than first-order
inequity aversion.

A slightly different specification of the same idea has been
proposed by Bolton and Ockenfels (2000). Instead of the differ-
ence between a person’s own and another person’s outcome, they
used the ratio. This specification allows for diminishing or increas-
ing marginal disutility from unfair distributions:

Uk, y)=x—a- max(o, (x = = %)2) (8)

Many studies examining fairness preferences under reduced
cognitive capacities used either dictator or ultimatum games (Cap-
pelletti et al., 2011; Halali et al., 2014; Schulz et al., 2014). Schulz,
Fischbacher, Thoni, and Utikal (2014), for example, used 20
minidictator games, where participants had to choose between two
different distributions. To manipulate cognitive load, the authors
used a 0- or a 2-back task: Participants heard a sequence of letters
and in the 0-back task had to press a button whenever a target letter
was heard (control condition) whereas in the 2-back task they had
to press a button when the currently heard letter was the same as
the letter presented two places back (load condition). The authors
found that the choice of the fair allocation increased from 30.9%
to 43.3% from the control to the load condition. In line with other
studies cited above, the authors concluded that under high cogni-
tive load, participants’ preferences shifted toward more fairness.
Interestingly, Schulz et al. (2014) also reported that participants
reacted more sensitively to the allocation alternatives in the control

condition: In each trial, participants had to decide between an
almost fair and an unfair allocation and the degree of unfairness
was varied from a share of 60% up to 100% for the dictator. It was
observed that dictators chose the fair allocation more often when
the alternative allocation was very unfair, compared with cases
where the unfair allocation was closer to the fair allocation. This
effect was less pronounced for participants in the high load con-
dition. In line with our reasoning, this finding could also be
interpreted as a decrease in sensitivity or an increase in inconsis-
tency under cognitive load. As in the previous domains, to rigor-
ously test these two competing hypotheses, preference shifts and
choice errors have to be assessed conjointly in a mathematical
model.

Stochastic Choice Models

To account for the probabilistic character of preferential choices
(see also Rieskamp, 2008) we add choice rules that lead to prob-
abilistic choice predictions to the respective utility functions. We
used two different choice models, namely, probit and trembling
hand, to generalize over specific mathematical implementations
and also different stochastic utility frameworks. According to
random utility models the utility of an option varies. The proba-
bility of choosing an option is determined by the probability that
one option has a higher utility than the other option. The probit
random utility model assumes normally distributed utilities and
can be decomposed into a stable and a random component:

Ustochastic = U(X) te, (9)

with e being normally distributed with mean 0 and variance 6 and
where U(x) is the constant utility of the option. In case of choices,
the probit transformation converts the preference order of different
options into a probability of choosing the respective option. In case
of valuations, answers are modeled as stemming from the respec-
tive normal distribution. The 6 specifies the variability of the
normally distributed utility around the stable utility prediction
from a deterministic utility function. In general, the larger 6, the
higher the observed choice inconsistencies and the more often an
option with a lower mean utility is chosen.

The trembling hand model (Harless & Camerer, 1994) assumes
that people have a fixed utility for each choice option, but when
choosing between the two options they will perform an error with
a constant probability and choose the inferior option. Assuming
option y has higher utility to the decider than option x this means

prob(y) = step(U(y) — U(x)) - (1 — 6) + step(U(x) — U(y)) -6, (10)

where the step function takes a value of 1 if U(y) — U(x) is positive
and O otherwise. In our example the probability of choosing y
would be determined by the first term of the equation, that is, 1
minus the trembling hand error 6, whereas the second term would
become 0. In the case of a valuation, a trembling hand error is
modeled by drawing the valuation from two different distributions:
from a normal distribution with the mean determined by a given
utility model, or from a uniform distribution across the whole
answer scale space. The first distribution corresponds to a valua-
tion according to the utility model, whereas the second distribution
represents a random valuation. The probability with which valua-
tions are explained by a draw from the uniform distribution equals
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the trembling hand error as defined previously. Finally, the higher
the trembling hand error, the higher the choice inconsistency.

Overview of Experiments

In sum, in very different domains of decision making, such as
risk taking, intertemporal choice, and social interactions, research-
ers claim that reduced cognitive capacities lead to systematic shifts
in people’s preferences. To test the hypothesis of a change of
preferences against the alternative hypothesis of an increase in
choice inconsistency, we made use of the following methodolog-
ical advancements: First, we used a within-subject design. This
allows observation of the impact of reduced cognitive capacities
on an individual level and thus a richer analysis than the usual
comparisons of group differences. Second, we used mathematical
models that explicitly incorporate a utility model and a stochastic
choice theory, thus allowing for rigorous testing of the competing
hypotheses. Third, we used choice and valuation tasks to general-
ize our findings across different response modes. Finally, by
exploring three widely studied domains of decision making with a
comparable mathematical modeling approach, we have corrobo-
rated the generalizability of our findings and have tried to unify
methodology in studying preferential choices under reduced cog-
nitive capacities.

We performed a model-recovery study to demonstrate that our
modeling framework is able to identify and to distinguish between
a shift in preferences and a shift in choice consistency and we refer
to Appendix A for the details. Here, suffice to say that manipu-
lating a preference parameter as well as manipulating choice
consistency can be recovered with high power given a realistic set
of parameter values and choice data. In addition, the discriminabil-
ity is also very high, meaning that only rarely is a preference shift
mis-specified as a shift in choice consistency and vice versa, given
our modeling framework.

The idea of reduced cognitive capacities has been implemented
in psychological experiments, for example, by inducing sleep
deprivation or stress (e.g., Anderson & Dickinson, 2010; Morgado,
Sousa, & Cerqueira, 2015). However, these designs are difficult to
standardize and the duration and effect size of these manipulations
over repeated choice situations might be questioned. Other re-
searchers adopted sequential designs where participants were
given a strenuous task prior to the task of interest (e.g., Freeman &
Muraven, 2010). However, recently there have been doubts about
whether this manipulation triggers a sensible effect size (Carter &
McCullough, 2014). Taking these limitations into account, we
used a simultaneous task design where people have a secondary
task to perform while making preferential choices (cognitive load
manipulation). More concretely, we induced cognitive load by
means of an n-back task—a strong, reliable, and well-established
manipulation (Cohen et al., 1994; Gevins & Cutillo, 1993; Kane,
Conway, Miura, & Colflesh, 2007; Pashler, 1994).

In the following section we describe our first experiment in the
domain of risky choice, starting with our mathematical model, and
explain how the model captures preference shifts and changes in
choice consistency. The second and third experiments on temporal
discounting and strategic interactions follow. At the end, we dis-
cuss the converging evidence across all three experiments.

OLSCHEWSKI, RIESKAMP, AND SCHEIBEHENNE

Experiment 1: Risk Taking

Method

Experimental design and mathematical model. In Experi-
ment 1 we explored the effect of cognitive load on risky choices.
Participants repeatedly chose between 160 binary two-outcome
gambles presented on a computer screen. Each participant made
half of the choices under cognitive load. In the load condition,
participants performed an audio version of the n-back task in
parallel with the main gamble task. In the control condition, a
simplified version of the n-back task was presented (see below for
details). The order of the manipulation was counterbalanced be-
tween participants. Because of the within-subject design, we ana-
lyzed the differences between the two conditions following a
hierarchical Bayesian framework that captures individual- as well
as group-level effects. In our main model, the subjective utility of
a gamble is captured with a power function with the exponent {3 as
a free parameter,

U.=37p; 1P oo, (11)

1

The utility difference between two gambles feeds into a probit
choice function with one free parameter 6 that measures the
variability of the utility:

Uigy — U,
= risky safe
Prisky CD(O + 98- cond)’ 12

where the difference between the control and load conditions
within each participant is captured by a & parameter introduced for
both 3 and 0, governed by a dummy variable cond coded as —1 for
the load condition and +1 for the control condition. Thus, the
parameter values for the control and load conditions are calculated
as adding or subtracting the respective 8 from each average pa-
rameter value. This results in a composite measure for risk pref-
erence in the control, B, .- and the load, 3,4, condition as well
as a composite measure of error variance in the control, 0., o1
and the load, 0,,,4, condition. Implemented this way, a difference
in either preference or consistency between the control and the
load condition will be reflected by the respective & parameters. In
particular, cognitive load could lead to a credible shift in prefer-
ence; SB, to a credible shift in error variance; 8, to a credible shift
in both; or to no difference at all. The choice-consistency hypoth-
esis states that cognitive load increases the inconsistency 6 but
leaves the risk preference 3 unchanged. Similarly, we instantiated
the other models comprising of different utility functions and the
trembling-hand choice rule as described in the introduction.

In all three experiments of the present work, we follow a
two-step approach for inference: First, we tested the general exis-
tence of an effect of the cognitive load manipulation by model
comparisons. We estimate WAICs for the full model and compare
it with models that assume no effect of cognitive load (8s fixed to
zero) and with models assuming just one single effect of either of
the parameters. WAICs are established Bayesian model compari-
son tools and especially suited to hierarchical Bayesian modeling
because they punish model complexity more accurately than com-
parable measures that just rely on the number of parameters
(Vehtari, Gelman, & Gabry, 2016a, 2016b). In a second step, after
testing the effect of the cognitive load manipulation, we followed
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an estimated approach for the parameters of the models to quantify
and characterize the effects for the potential shifts in preferences
and choice inconsistencies. Therefore, we examine the 95% high-
est density interval (HDI) of the posterior distribution of the
differences in parameters between experimental conditions, 8.
Differences where the HDI includes zero are not credibly different
from zero, whereas differences that exclude the HDI are regarded
as being credibly different from zero and thus it is concluded that
such a parameter credibly differed due to the cognitive load
manipulation (Kruschke, 2014).

We constructed a hierarchical Bayesian model along the lines
proposed by Kruschke (2014). On an individual level we estimated
four parameters for each participant (8,, 0;, 33 ;, and 8, ;). These
parameters were drawn from a normal distribution with mean and
standard deviation equal to the respective group-level parameters.
Before being entered in the model, the parameters were further
transformed as follows: For the parameters capturing preferences,
0 was added to or subtracted from 3 depending on the experi-
mental condition, and the sum was transformed into a uniform
distribution between 0 and 3 by means of an inverse probit trans-
formation that was scaled by the factor 3. Similarly, for the error
variance, 8, was added to or subtracted from 6 and the sum was
transformed into a uniform distribution from O to 5. These trans-
formed priors were chosen to be distributed in a broad range of
plausible parameter estimates from previous estimation ap-
proaches in the literature or derived from theoretical consider-
ations of the respective models. For all parameters, we made sure
that the posterior estimates were not very close to the endpoints of
a given range.

These transformations were done to facilitate the creation of
intuitive and noninformative prior distributions on the group-level
parameters. Means of all parameters were drawn from a normal
distribution with a prior mean of 0 and a variance of 0.5. The
variances of the group parameters were drawn from uniform
distributions between 0 and 0.5. Given the sum of two parameters
that are inverse probit transformed, a variance of 0.5 for each
parameter guarantees that the transformed parameter combinations
are truly uniform across the specified range. The priors for the
alternative model specifications were constructed along the same
principles.

This and all following data analyses were conducted with the
JAGS package (Hornik, Leisch, & Zeileis, 2003) in RStudio (R
Core Team, 2016; RStudio Team, 2015). WAICs were calculated
from the likelihoods with the loo package (Vehtari et al., 2016a).
All presented posterior estimates had an effective number of
samples of at least 10,000 and were numerically approximated
with three chains that mixed and converged, as indicated by the
Gelman—Rubin statistic R < 1.02 for all reported group posteriors
(Gelman, Carlin, Stern, & Rubin, 2014). The source code of the
models and the Bayesian analyses can be found at the Open Science
Framework: https://osf.io/vfmt8/.

Gamble stimuli. The gambles in the choice task were pre-
sented adaptively (80 in each condition) to increase the efficiency
of the experimental design. As a basis for the adaptive design, 400
pairs of risky two-outcome gambles were randomly created ac-
cording to the following rules: Expected values were in the range
of 40 to 100; the standard deviation of each gamble (i.e., its
riskiness) ranged from 1 to 50; the pairs were equally distributed
across 10 bins that varied in the expected value differences be-

tween the riskier and safer gamble (in ascending order). That is, in
the first bin the expected value of the safer gamble was much
higher than the expected value of the riskier gamble whereas it was
the other way around in the tenth bin. Within each bin, the range
of differences in standard deviation between the two gambles was
similar so that the difference in standard deviation and in expected
value were independent. The adaptive choice task itself consisted
of several steps. In the first step, participants made 20 initial
choices, based on two randomly selected gamble pairs from each
bin. This was to guarantee that each participant made choices
along the whole range of expected value differences. In a second
step, an adaptive algorithm was implemented: First, each partici-
pant saw a pair of gambles from the fourth bin. Thereafter, when
the riskier of the two gambles was chosen, the next pair of gambles
was selected from a lower bin and vice versa whenever the safer of
the two options was chosen.

The gambles in the second half of the experiment (i.e., either the
load or the control condition) consisted of the same 80 gambles
and were presented in the same order to make sure that the stimuli
in the two conditions were comparable. Gambles were randomized
with respect to their occurrence on the left or right side of the
screen. Choices were self-paced and were made with the keys “D”
for the left option and “L” for the right option. Figure 1 displays
a screenshot of the experimental task. The software for this and the
other experiments were programmed in PsychoPy (Peirce, 2007).

N-back task. In parallel to the gamble task, participants also
heard a continuous sequence of letters at 3-s intervals over ear-
phones. Participants had to press the space bar on the keyboard
whenever a target occurred. The definition of a target depended on
the condition: In the load condition, a target occurred whenever the
currently heard letter corresponded to the third latest letter in the
sequence (hence, a 3-back task). In the control condition, every
letter “L” represented a target. The control task did not require
memory and thus should have put a significantly lower tax on
cognitive capacities (Cohen et al., 1994; Miller, Price, Okun,
Montijo, & Bowers, 2009). Participants had to press the button
within 2,700 ms after the onset of the stimulus. In total there were
eight different letters (D, F, H, L, K, N, P, R) and the sequences
were randomly created with the constraint that 25% of a bundle of
40 consecutive letters contained a target. Feedback (right or
wrong) was provided when the bar was pressed or when a target
was missed. For every correct press of the space bar as well as for
no reaction to nontargets, participants earned one point. To calcu-
late the final score, the number of points was divided by the total
number of letters heard.

Participants, incentives, and procedure. Forty psychology
students (M, = 24.23 years, SD = 5.47, seven male, 33 female)
participated for course credit and a choice-dependent monetary
bonus. Because we aimed for the analysis of our hierarchical
Bayesian model framework, a traditional power analysis did not
apply. Therefore, we opted for a convenient sample size of 40. The
whole experiment lasted 60-90 min and participants earned on
average 6.46 Swiss Francs (CHF; about $6.50) with a range of 2.00
to 13.80 CHF between participants. The experiment was approved
by the institutional review board (IRB) of the psychology depart-
ment of the University of Basel. Participants were welcomed at the
laboratory, received written instructions, and gave informed con-
sent. After the instructions, there were test questions to check
whether they understood the decision task and the n-back task. It
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Please choose one gamble

14 ECU 85 ECU

'/

42 % 58 %

24 ECU 44 ECU

) 4

8 % 92 %

Figure 1. Schematic picture for one trial in the risky choice task. Participants chose one of the two gambles
with the keyboard and heard letters over earphones; feedback on the auditive task was given in the blank
rectangle below. ECU = experimental currency unit; these were exchanged into Swiss Francs (10 ECU = 1
CHF). See the online article for the color version of this figure.

was guaranteed that only participants who answered all questions
correctly started the experiment. If participants answered incor-
rectly, which happened only rarely, the instructor would reread the
instructions and help the participant understand and produce the
correct answer. The experiment was done in two blocks with one
block containing the control task and one block the n-back task as
secondary task. The order of the conditions was alternated between
participants. As described, there were 80 self-paced gamble deci-
sions in each block and there was a break of 10 min between the
two blocks.

Both the decision task and the n-back task were incentivized.
The decision task was incentivized by randomly selecting one of
the gamble trials at the end of the experiment to play out. The
outcome of the selected trial was then multiplied by the score from
the n-back task. During the experiment all outcomes were shown
in experimental currency units (ECUs), which were exchanged
into Swiss Francs (10 ECU = 1 CHF). At the end of the choice
task, participants performed a nonincentivized, automated version
of the operation span (Ospan) task (Unsworth, Heitz, Schrock, &
Engle, 2005). In this task, participants sat at the computer and
solved math problems while having to remember up to seven
letters, which they had to type in after a series of math problems.
After this task participants were debriefed and paid.

Results

Descriptive results. Overall, participants chose the risky op-
tion 51.1% of the time in the control and 52.2% of the time in the

load condition, Wilcoxon’s test: W(n = 40) = 361.5, p = .886.
Hence, the adaptive design managed to bring individual partici-
pants close to their respective indifference points. Yet, these per-
centages are hard to combine across participants, because everyone
saw different gambles. Therefore, in Figure 2 we plot the percent-
age of risky choices across all participants separately for the
control and load conditions and for different quantiles of expected
value differences (calculated as the expected value of the riskier
option minus the expected value of the safer option). The figure
shows that the percentage of risky choices increased from the first
to the fifth quantile, indicating that participants’ choices were
affected by the gambles’ expected value. The figure further shows
a visible difference between the control and load conditions: In
the control condition, the increase in the percentage of risky
choices is steeper than in the load condition. This is a first
indication that choice consistency in the load condition was
diminished. Reaction times were on average 5.8 s in the control
and 6.6 s in the load condition. A ¢ test across the individual log
reaction time (RT) means showed no significant difference,
1(39) = —=0.95, p = .347.

Model results. Here we present the results for the full model
as introduced in the Method section. The full model has a WAIC
of 8,160. This is lower than the WAIC of a model fixing both &s
to zero (8,253). In addition, it is also smaller than both models with
one o fixed to zero (either preference with 8,191 or error with
8,179, respectively). This demonstrates that the full model, which
assumes a shift in preferences and a shift in choice consistencies as
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Figure 2. Experiment 1 risky gambles: Descriptive statistic for choice
proportions for different quantiles of expected value (EV) differences
between the riskier and the safer gamble with higher quantiles meaning
higher EVs for the riskier gamble. Small dots and squares are individual
choices in the control and load conditions, respectively. The larger dots and
squares are group means, and error bars are 95% confidence intervals.

a result of the cognitive load manipulation is best to describe the
data.

Now, the effect of cognitive load with respect to the different
parameters is assessed and the estimates of risk preference (3 for
the two conditions are presented in Figure 3. The estimated mean
for the group-level posterior of the utility curvature parameter was
Beonwor = —1.23 (SD = 0.15, 95% HDI [—1.53, —0.94]) in the
control condition and By, = —1.13 (SD = 0.21, 95% HDI
[—1.54, —0.71]) in the load condition. Retransforming these val-
ues to the original scale, this corresponds to an average utility
curvature parameter across both conditions of around 0.36. This
means that the participants were overall quite risk averse. The
group posterior for the difference in risk preference between the
control and load conditions showed a mean of 8, = —0.05 (SD =
0.12). Because the posterior distribution overlaps 0 (95% HDI
[—0.28, 0.19]), there is no credible difference between people’s
risk preferences in the two experimental conditions. Concerning
the individual parameter estimates, it can be seen in Figure 3 that
most participants scatter closely around the 45-degree line. There
is also no trend of a majority of participants’ risk preference
parameter estimates increasing or decreasing, as can be seen by a
binomial test (19 of 40 with 83 > 0, binomial test: p = .875). This
means similar individual risk preferences between the control and
load conditions, thus corroborating the group-level conclusion.

Figure 4 shows the posterior distribution of the utility variance
on the group level 6, with a mean of 6., = —2.04 (SD = 0.07,
95% HDI [—2.18, —1.91]) in the control condition and a mean of
an 0,,,4 = —1.70 (SD = 0.10, 95% HDI [—1.87, —1.50]) in the
load condition. To put the absolute numbers into perspective, for
an increase in terms of expected utility of 0.1 (outcomes were
standardized to values between 0 and 1) at the switching point of
the probit function, the percentage of choices for the riskier option
increased from 50% to 83% on average in the control condition,
but to only 67% in the load condition according to our choice
model. This illustrates that participants under load were less sen-

sitive to changes in expected value than in the control condition.
The difference in the error variance parameter between the
control and load conditions on the group level was 3, = —0.17
(SD = 0.05). This difference is credibly negative (95% HDI
[—0.26, —0.09]). Thus, the utility variance was lower in the
control compared to the load condition. This result is also corrob-
orated on an individual level because all individual parameter
estimates are above the 45-degree line shown in Figure 4 (or 40 of
40 participants had a 3, < 0).

Behavioral measures and robustness. In the n-back task,
participants scored on average 84.46% correct, with a range from
69.5% to 92.9%. Because on average 25% of the stimuli were
signals, never pressing a button would result in a score of 75%.
Five participants earned below that score. To measure working
memory capacity, we administered the automated Ospan task and
report the total number of recalled letters: On average, participants
achieved a score of 59.6 (range 34-75). Although we expected the
individual differences in working memory capacity to explain
some of the variance in the model parameters, there were no
significant correlations between participants’ Ospan scores and
their estimated model parameters. There was also no significant
correlation between the n-back score and the model parameters.
Appendix B shows all correlations.

Finally, as mentioned above, we administered two alternative
utility models: A linear utility model and cumulative prospect
theory (see Equations 2 and 3). As is shown in Table 1, the two
alternative models yield similar results. In both cases, choice
inconsistency increased in the load compared with the control
condition, whereas preferences remained unaltered. This is true in

n=-1.23
11 %
o |
T 01 * e
o 09 ° 20 "ﬁ
ﬂ '1 - O""&" ,,,,,,,,,,,,,,,,,,,,, 1
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-2 - g § @
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-3 -"|' T } T T T 1
3 -2 -1 0 1 2

Bcontrol

Figure 3. Experiment | risky gambles: Parameter estimates of risk pref-
erence 3 (on transformed scale): The x-axis shows individual risk prefer-
ence parameter estimates in the control condition and the y-axis shows
them in the load condition. Above and to the right of the plot are the group
posterior distributions of {3 in the respective conditions including the mean
and the 95% highest posterior density interval.
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Figure 4. Experiment 1 risky gambles: Parameter estimates of choice
sensitivity 6 (on transformed scale): The x-axis shows individual choice
sensitivity parameter estimates in the control condition and the y-axis
shows them in the load condition. Above and to the right of the plot are the
group posterior distributions of 6 in the respective conditions including the
mean and the 95% highest posterior density interval.

particular for cumulative prospect theory, showing that neither risk
preference nor the probability weighting function is credibly in-
fluenced by the cognitive load manipulation. Using a different
error model, namely, the trembling hand error (see Equation 10),
leads to similar conclusions: Higher cognitive load increases the
tremble error compared with the control condition for all tested
utility models. From the WAIC scores, we conclude that the probit
choice models describe our data on average better than the trem-
bling hand error models. Although the prospect theory implemen-
tation did not show any differences in parameters between the two
conditions other than the choice consistency parameter, it showed
the best fits. To sum up, in line with the choice-consistency
hypothesis, cognitive load led to an increase in choice consistency
rather than a shift in risk preferences. This holds on an individual
and on a group level. Furthermore, the results are consistent across
three alternative utility models that are commonly used in the
domain of risky choice and two different stochastic choice models.

Experiment 2: Temporal Discounting

Method

Experimental design and mathematical model. Experiment
2 tested how cognitive load affects temporal discounting of mon-
etary outcomes. Participants were presented with different out-
comes at different points in time (either one or two outcomes per
trial) and had to state for how much money they were willing to
sell their future outcome(s), otherwise known as their willingness
to accept (WTA). Cognitive load was manipulated as a within-

Table 1

Experiment 1 Risky Gambles: Mean Group Posterior Estimates of the Effect of Cognitive Load and WAICs for All Model Specifications

Prospect theory

Power utility

Linear utility

WAIC

Sensitivity

Weighting

WAIC Risk aversion

Sensitivity

Risk aversion Sensitivity WAIC Risk aversion

Error model

7,962 [57]

—.26" [—.42, —.09]
—.14" [—.24, —.04]

—.04 [—.18, .09]
—.04 [—.19, .09]

8,806 [77] .01 [—.17, .19]
.02 [—.17, .20]

—.19" [—.29, —.09]
—.17" [—-.26, —.09]

—.14 [—.36, .00]
—.05[—.28, .19]

8,338 [45]

—.20" [-.30, —.10]
—.15" [—.24, —.07]

—.07 [—.22, .08]

—.08 [—.28, .12]

Trembling hand

Probit

7,978 [56]

8,160 [49]

8,194 [49]

For model specifications see introduction and the Method section of Experiment 1. Displayed are mean group posterior estimates and WAIC with 95% highest density intervals (HDI) or standard

deviation of the WAIC in brackets.

Note.

* Significant differences between control and load condition according to the 95% HDL
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subject factor with an audio version of the 3-back task that was
identical to the manipulation in Experiment 1.

To analyze the data we used a hierarchical Bayesian regression
on the stated WTA prices. As our main model, we implemented
the one-parameter hyperbolic discounting model with the dis-
counting parameter k specified as follows:

_ outcome (13)
Paou = (T3 + S, - cond + Bpumber - number + By, - stake) - delay”

Here for a given trial, outcome stands for the monetary value in
the experimental currency (see below) and delay is the amount of
delay of the respective outcome in months. To present enough
discounting trials to estimate the model parameters, we had to vary
the stimulus characteristics with respect to the number of outcomes
(either one or two delayed outcomes) and the stake (either low or
high). To account for differences in discounting due to these
factors, we included two additional dummies that were +1 for
one-outcome trials or —1 for two-outcome trials, and +1 for
high-stakes-outcome trials and —1 for low-stakes-outcome trials,
respectively. The 3 parameters capture the corresponding effects.

To implement the probit choice model, the discounting function
is fed into a Bayesian regression (Equation 14). This regression
assumes a normal distribution around the discounted outcome,
with a variance that equals the choice variability. The larger the
variance, the broader the range of WTA prices for similar dis-
counted amounts and the less sensitive the valuation with respect
to the best fitting discounting parameter k.

WTA ~ dnorm(pgee. 0 + 8 - cond). (14)

Differences in parameter values between the two experimental
conditions are captured by the 8 terms as in Experiment 1. Again,
the choice-consistency hypothesis states that cognitive load will
change choice consistency but will leave time preference unal-
tered. The hierarchical Bayesian estimation was performed as in
Experiment 1. The composite parameters, consisting of the main
effect and the difference between the two experimental conditions,
Keontrols Kioads Ocontrol, aNd 00,4, Were set up uniformly from O to
0.2 and O to 1, respectively. We calculated 0., and 0,,,4 on the
precision scale, which transforms into the standard deviation scale
as follows: precision = 1/SD*. The exponential and the two-
parameter hyperbolic discounting functions as well as the trem-
bling hand choice rule were implemented accordingly, and results
are presented at the end of the Experiment 2 Results section.

Temporal discounting stimuli. As stated above, there were
two classes of stimuli to increase both the variety of the task and
the number of informative trials: Some trials had only one delayed
outcome and some trials had two outcomes that were paid out at
different points in the future. All stimuli were created by defining
10 points in time ranging from 1 week to 1 year (0.25, 0.5, 0.75,
1, 1.5, 2, 3, 6, 9, 12 months). Then two ranges of outcomes were
defined: low and high stakes. The low stakes ranged from 41 to 75
and the high stakes from 76 to 100 ECU either for one outcome or
distributed over two outcomes. Finally, outcomes were randomly
matched with the delay times. Forty stimuli each for one- and
two-outcome trials were randomly selected and were identical for
all participants. The task for the participants was to indicate their
WTA, that is, their minimum selling price for each stimulus. They
indicated their WTA with a slider that ranged from 0O to the
undiscounted amount or the sum of undiscounted amounts (for the

two-outcome trials) in that trial. Participants could move the slider
until they were satisfied with its position and then confirmed their
choice by clicking on the label with their current stated WTA price
(see Figure 5).

Participants, incentives, and procedure. Forty-six psychol-
ogy students (M,,, = 22.2 years, SD = 5.1, seven male, 39
female) participated for course credit and a monetary bonus. The
sample size was increase compared to the first study because
participants had only half of the trials in this experiment. The
whole experiment lasted 60 min to 75 min and participants earned
on average 5.8 CHF (about $5.80; range 1.7-8.8 CHF). The
experiment was approved by the IRB of the psychology depart-
ment at the University of Basel.

Participants were welcomed at the laboratory, received written
instructions, and gave informed consent. Only participants who
correctly answered all questions concerning the experimental pro-
cedure could start the experiment (similar to the procedure for the
first experiment). The experimental task was implemented on a
computer in two blocks with a break of 10 min in between. In each
of the two blocks, participants got 20 one-outcome and 20 two-
outcome self-paced trials in randomized order. Whether partici-
pants started with the load or control block was alternated between
participants.

Both the decision task and the n-back task were incentivized. At
the end of the experiment, one of the trials was chosen at random
and a Becker-DeGroot—Marschak auction was exercised (Becker,
DeGroot, & Marschak, 1964): A random number between 0 and
the maximum of the answer scale was drawn and compared to the
participant’s stated WTA for the given trial. If the random number
was larger than or equal to the WTA, the participant’s option for

Please state your
minimum selling price

15 ECU in 2 weeks and
55 ECU in 6 Month

h. AN

50.00

Figure 5. Schematic picture for one trial in the temporal discounting task.
Participants dragged the blue triangle to their preferred value. The value
chosen appeared in the gray rectangle below the scale. A choice was
confirmed by clicking on the gray rectangle. Simultaneously, participants
heard letters over earphones; feedback on the auditive task was given in the
blank rectangle below. ECU = experimental currency unit. See the online
article for the color version of this figure.
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gaining the future reward was sold for an immediate outcome
proportional to the random draw. If the random draw was smaller,
the participant’s option was not sold and the participant kept the
future outcome(s). The immediate or future outcome was then
multiplied by the score of correct reactions to the n-back task (for
calculation of the n-back score see Experiment 1). All shown
outcomes were exchanged into Swiss Francs (5 ECU = 1 CHF).
Immediate outcomes were paid in cash and delayed outcomes were
wire-transferred at the respective times to the participant’s private
bank account. In the experiment, 12 participants received a random
offer above their minimum selling price and thus received an
immediate outcome. At the end of the two blocks, there was an
unincentivized, computerized version of the Ospan task (Unsworth
et al., 2005; see Method section of Experiment 1). After this task,
participants were debriefed and paid.

Results

Descriptive results. Overall, participants selected an amount
of 49.56 ECUs in the control and 49.22 ECUs in the load condi-
tion, which corresponds to an average discounting rate over all
time intervals of 31.13% and 31.43%, respectively, Wilcoxon’s
test: W(n = 46) = 554, p = .889. A descriptive summary of the
data shows the percentage of discounting indicated by the WTA
prices across all participants separately for the control and load
conditions and for different quantiles of delay (see Figure 6). The
delay of the future outcome increased from the first to the fifth
quantile and was in the case of two-outcome trials the average of
the two delays. As expected, there was an overall trend of dis-
counting increasing from the first to the fifth quantile. This shows
that participants’ WTA prices were affected by the (average) delay
of the outcome(s). However, the increase in discounting for longer
delayed outcomes was not very large, mainly due to the two-
outcome trials where the average delay was less important in

—o—control —o -load

80

Discounting in %
B D
o o
L L

N
o
1
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T
3rd quantile
(Average) Delay

1st quantile 5th quantile

Figure 6. Experiment 2 temporal discounting: Stated willingness-to-
accept prices are transferred into discounting percentages from the out-
come or sum of outcomes in each trial. Discounting percentages are plotted
for different quantiles of delay with higher quantiles meaning longer
delays. Small dots and squares are individual choices in the control and
load conditions, respectively. The larger dots and squares are group means
and error bars are 95% confidence intervals.

determining WTA prices. Reaction times were on average 11.28 s
in the control and 13.46 s in the load condition. A ¢ test based on
the individual log RT means did not show significant differences
between the two conditions, #(45) = —1.45, p = .154.

Model results. Here we present the results for the full hier-
archical Bayesian regression with hyperbolic discounting as intro-
duced in Equation 14. The full model has a WAIC of 27,747. This
is lower than the WAIC of a model fixing both 8s to zero (27,969).
In addition, it is also smaller than both models with one d fixed to
zero (either preference with 27,855 or error with 27,874, respec-
tively). This demonstrates that the full model, which assumes a
shift in preferences and a shift in choice consistencies as a result of
the cognitive load manipulation is best to describe the data.

To assess the magnitude of the effect on the preference and
choice consistency parameters, Figure 7 first shows group and
individual posterior estimates for the discounting parameter k of
the hyperbolic discounting model for the control and load condi-
tions. Overall, the group posterior of the discounting parameter
had a mean of K ,,uol —1.06 (SD = 0.08, 95% HDI
[—1.21, —0.91]) in the control condition and k., = —1.02 (SD =
0.08, 95% HDI [—1.17, —0.87]) in the load condition. Retrans-
forming the average parameter estimates across both conditions
results in a discounting rate of 0.15 for 1 month; hence, people
showed considerable discounting behavior. As an example, $100
in 1 year is worth only $36.50 today, assuming hyperbolic dis-
counting with the here-estimated discount rate. As the effect of our
experimental manipulation on time preference, we estimated
8, = —0.02 (SD = 0.03, 95% HDI [—0.07, 0.04]). Because 0 is
included in the group-level distribution, we can conclude that there
is no credible effect of the cognitive load manipulation on the
discounting parameter. This is further corroborated by the esti-
mates of individual parameters varying unsystematically between
the control and load condition (21 of 46 participants with steeper
discounting in the load condition 3,. < 0, binomial test: p = .659).

The group posterior of the parameter capturing an effect of
two-outcome trials compared to one-outcome trials had a mean of
Brumber = —0.39 (SD = 0.05) and the 95% HPD interval excludes
095% HDI [—0.50, —0.29]. This means that two-outcome stimuli
were more strongly discounted than one-outcome stimuli. This
may be due to the discomfort of two different points of payment.
Moreover, discounting was weaker in trials with high-stakes out-
comes than in trials with low-stakes outcomes: The parameter
capturing the effect of high- compared with low-stakes trials had a
significant influence on discounting behavior (B, = —0.04,
SD = 0.02, 95% HDI [—0.07, —0.01]).

The group-level posterior of consistency of WTA prices was
measured with the precision 6 (= 1/variance) of the normal
distribution in Equation 14. Estimates are on a probit scale and
results are shown in Figure 8. Neither the number of outcomes nor
the amount at stake credibly influenced precision and thus no
additional dummies were included. Estimation of the precision
gives a group mean 0...,., = —1.52, SD = 0.08, 95% HDI
[—1.68, —1.38] in the control condition and 0,,,4 = —1.66, SD =
0.08, 95% HDI [—1.81, —1.51] in the load condition. Retransfor-
mation of these values results in standard deviations of the WTA
prices of 8.96 and 10.37, respectively. This shows that in the load
condition, participants” WTA prices were more inconsistent with
respect to the hyperbolic discounting model than in the control
condition. In line with this, the results indicate a credible differ-
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Figure 7. Experiment 2 temporal discounting: Parameter estimates of
time preference k (on transformed scale): The x-axis shows individual time
preference parameter estimates in the control condition and the y-axis
shows them in the load condition. Above and to the right of the plot are the
group posterior distributions of k in the respective conditions including the
mean and the 95% highest posterior density interval.

ence in the precision in the load compared with the control con-
dition: The corresponding group-level posterior of the condition
parameter had a mean of 8, = 0.07 (SD = 0.02) and the 95% HPD
interval excludes 0 (95% HDI [0.02, 0.12]). This is corroborated
on an individual level, as can be seen in Figure 8, where most
participants’ parameter estimates fall below the 45-degree line (35
of 46 participants 3, > 0, binomial test: p = .001).

Behavioral measures and robustness. In the n-back task,
participants scored on average 84.62% correct, with a range from
74.40% to 94.29%. One participant’s score was below the score
that results if the button was never pressed. In the automated
Ospan task, participants achieved an average score of 55.71, with
a score range from 31 to 72. As in Experiment 1, there was no
significant correlation between the Ospan measure or the n-back
score and the model parameters (see Appendix B).

As a robustness check, we also implemented two alternative
discounting models (see Equations 5 and 6): exponential discount-
ing and a two-parameter hyperbolic discounting function proposed
by Green and Myerson (2004). As shown in Table 2, for expo-
nential discounting the choice inconsistency also increased in the
load compared to the control condition. These results are robust to
the use of a trembling hand error for the exponential as well as the
one-parameter hyperbolic discounting model. For the two-
parameter hyperbolic discounting function, two effects of the
cognitive load manipulation were found: Both the discounting
parameter and the choice consistency parameter differed credibly
between the control and load conditions. Thus, this model speci-
fication cannot distinguish between an effect of preference or
choice consistency. One reason might be that the two parameters

affecting discounting of outcomes in this model (discounting and
scaling) have been shown to be highly correlated (Peters et al.,
2012). Consequently, although this model seems best in explaining
the data taking the WAIC criterion, the additional mathematical
complexity might make it more difficult to identify the source of
the cognitive load effect.

In summary, these results indicate that cognitive load affected
choice consistency rather than time preference, both for exponen-
tial and hyperbolic discounting and for two different choice rules.
With a two-parameter hyperbolic discounting model, cognitive
load seems to affect both preference and consistency. Overall,
these findings accord with the results of the first experiment.

Experiment 3: Fairness Preferences

Method

Experimental design and mathematical model. In Experi-
ment 3 we examined the influence of cognitive load on fairness
preferences in social interactions. Participants in the experiment
took the role of the responder in a sequence of one-shot mini-
ultimatum games (Bolton & Zwick, 1995). As in the regular
ultimatum game, the proposer distributes money between her- or
himself and the responder. The responder can reject offers, in
which case both participants get nothing. In miniultimatum games,
the proposer can only decide between two given distributions, so
we created different choice situations that allowed for repeated,
nontrivial trials. Cognitive load was manipulated as a within-

econtrol

Figure 8. Experiment 2 temporal discounting: Parameter estimates of
choice sensitivity 6 (on transformed scale): The x-axis shows individual
choice sensitivity parameter estimates in the control condition and the
y-axis shows them in the load condition. Above and to the right of the plot
are the group posterior distributions of 6 in the respective conditions
including the mean and the 95% highest posterior density interval.
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Table 2

Experiment 2 Temporal Discounting: Mean Group Posterior Estimates of the Effect of Cognitive Load and WAICs for All Model Specifications

Hyperbolic 2

Hyperbolic 1

Exponential

Discounting Sensitivity WAIC Discounting Sensitivity WAIC Discounting Scaling Sensitivity WAIC

Error model

.03[-.02,.08] —.30"[—.53, —.07] 26,525 [106]

27,747 [115] —.16" [—.28, —.03] .03 [—.02,.08]

—.02[-.07,.03] —.34"[—.59, —.11] 27,261 [101] —.17"[—.30, —.04]

.00 [—.04,.03] —.30"[—.52, —.07] 27,698 [98]

Trembling hand

Probit

26,890 [120]

.06" [.02, .10]

28,436 [113] —.02[-.07,.04] .07 [.02,.12]

.05" [.01, .08]

—.01[—.04,.03]

For model specifications see introduction and Method section of Experiment 2. Displayed are mean group posterior estimates and WAIC with 95% highest density intervals (HDI) or standard

deviation of the WAIC in brackets.

Note.

OLSCHEWSKI, RIESKAMP, AND SCHEIBEHENNE

* Significant differences between control and load condition according to the 95% HDL

subject factor with an audio version of the n-back task as in the
previous experiments.

Our main model describes responders’ rejection rates with a
simplified version of the inequity aversion model from Fehr and
Schmidt (1999) that takes only first-order inequity aversion into
account. According to this model, we define the utility for a
responder as

Ugyiq = resp — (o + 8, - cond) - max(0, prop — resp).  (15)

Here the rejection rates of responders depend on the amount the
responder gets, resp, and the inequity against the responder is
calculated as the difference between proposer and responder out-
come or 0 if the responder gets more than the proposer. The
parameter o is usually negative and estimates how important
inequity is in determining the rejection rate and thus measures
inequity aversion or fairness preference. We also estimated the
inequity aversion utility function as specified in Bolton and Ock-
enfels (2000) and the full inequity aversion from Fehr and Schmidt
(1999) including second-order inequity aversion (see the Robust-
ness section below).

To account for choice consistency, our main model uses the
probit formula with choice variability 6, similar to in the previous
two experiments. In the context at hand, the probability of reject-
ing a given offer was specified as follows:

. _ 0-— Udisl
p(reject) = (I)(M.,—Lt)nd)

As an example of how the model works, if the utility from the
proposed distribution is negative (this happens given a certain o
and if the proposer outcome is sufficiently larger than the re-
sponder outcome), the probability of rejecting the distribution is
larger than 50%. This is similar when implementing a trembling
hand error, where a free parameter captures just the probability of
rejecting an offer with a positive utility and accepting an offer with
a negative utility. Differences between the load and the control
conditions are again captured by the 8 terms for o and 6, respec-
tively. As before, the choice-consistency hypothesis states that
cognitive load changes the sensitivity parameter 6 of the re-
sponder, but not the responder’s inequity aversion o. The hierar-
chical Bayesian estimation is similar to in the previous experi-
ments. The composite parameters capturing inequity aversion,
Oleontror AN 04, are set up uniformly between O and 5 and the
parameters capturing error variance, 0., and 6,.,4, are set up
uniformly in the range of 0 to 100. The additional model specifi-
cations are set up in the same way.

Miniultimatum game stimuli. In total we created 40 mini-
ultimatum games. Responder outcomes ranged from 0 to 90 and
proposer outcomes from 15 to 120 ECU. The sum of responder and
proposer outcomes in each of the possible distributions was not
necessarily equal. This means there were trade-offs between the
overall outcome (i.e., social welfare) and the respective out-
come distributions. All miniultimatum games were pretested to
make sure that they provided nontrivial distribution options for the
proposer and that they entailed nonnegligible rejection rates on the
part of the responder (Fleischhut, Artinger, Olschweski, Volz, &
Hertwig, 2014).

All participants saw the same 40 miniultimatum games, but in
different conditions (control or load) and in a randomized order.
Incentivized choices from five proposers were collected before the

(16)
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main experiment started. Proposer choices were only important for
incentivizing responders and are therefore not reported here. Re-
sponder choices were collected with the strategy method. This
means responders had to state their acceptance or rejection for
each of the two alternative distributions in each miniultimatum
game before they knew which distribution was chosen. This al-
lowed us to elicit a larger amount of responder data. In each trial,
participants saw the currently offered distribution in the middle of
the screen and had to state whether to accept or reject with the
letters “D” and “L.” In the upper right corner of the screen they
also saw the alternative distribution that the proposer could have
chosen. Figure 9 shows a screenshot of the task.

Participants, incentives, and procedure. Fifty-seven psy-
chology students (M,,. = 25.07 years, SD = 8.06, 14 male, 43
female) participated for course credit and a choice-dependent
monetary bonus. A higher sample size than in the first experiment
was chosen because of the reduced number of trials for each
participant. The whole experiment lasted between 45 min and 60
min and participants earned on average 7.60 CHF (about $7.60)
aggregated over responder choices and the n-back task. The pay-
ments varied from 3.70 to 11.29 CHF across participants. The
variation in payment mainly occurred because for 15 participants
a trial was chosen for payment where they rejected an ultimatum
offer, thus these participants earned nothing from the ultimatum
game. The experiment was approved by the IRB of the psychology
department at the University of Basel.

Participants were welcomed at the laboratory, received written
instructions, and gave informed consent. Only those participants
who answered all questions concerning the experimental proce-
dure correctly started the computerized experiment. The experi-
ment consisted of two blocks with a 10-min break between the
blocks. Participants got 40 self-paced choices (20 miniultimatum

Offer
Player A:
40 ECU

Player A:

50 ECU You:
40 ECU

You:
15 ECU

Figure 9. Schematic picture for one trial in the miniultimatum game.
Participants chose whether to accept or reject an offer with the keyboard.
A bit smaller on the upper right side of the screen, the distribution of the
miniultimatum game that was not chosen was depicted. Simultaneously,
participants heard letters over earphones; feedback on the auditive task was
given in the blank rectangle below. ECU = experimental currency unit.

games) where they could accept or reject distributions that were
randomized in each block. The two different distributions of one
miniultimatum game did not necessarily follow each other, but
they always appeared in the same block. Whether participants
started with the load or the control block was alternated across
participants.

Both the decision task and the n-back task were incentivized.
One of the decision trials was chosen at random and matched with
one of the five proposers. For the payment, only the responder
choice for the distribution actually chosen by the matched proposer
mattered. If at this distribution the responder accepted, then she or
he would earn a payout proportional to the responder outcome in
that distribution. If the responder rejected this distribution, he or
she would get nothing. The five proposers were matched equally
often to responders and at the end of all experiments for each
proposer one responder was randomly chosen to be payoff rele-
vant. The proposers got their money after the experiment ended via
personal collection or bank transfer. In contrast to the previous
experiments, the performance in the n-back task was incentivized
by multiplying the obtained score by 5 CHF. The resulting amount
was then added to the payment from the miniultimatum game (for
calculation of the n-back score see Experiment 2). This was done
to guarantee that participants who rejected many distributions also
had an incentive to achieve a good n-back score. All shown
outcomes were transferred into Swiss Francs (10 ECU = 1 CHF).
At the end of the two blocks, there was an unincentivized, com-
puterized version of the Ospan task (Unsworth et al., 2005) as in
the previous experiments. After this task, participants were de-
briefed and paid.

Results

Descriptive results. In the following we analyze only re-
sponder choices: On average participants rejected 37% of all
offers, 36% in the control and 38% in the load condition, respec-
tively, Wilcoxon’s test: W(n = 57) = 460, p = .130. Figure 10
shows the average rejection rates for different levels of inequality
separately for the control and load conditions. As expected, the
rejection rate increased with the inequality of the distribution. At
first glance, there is no visible difference between the control and
load conditions. Participants took on average 2.82 s in the control
condition and 4.81 s in the load condition to accept or reject an
offer. Taking the means of all participants and calculating a paired
t test, the difference in logarithmic RT between conditions is
significant, #(56) = —4.98, p < .001.

Model results. Here, we present the results for the full model
as introduced in Equation 16. The full model has a WAIC of 2,815.
This is lower than the WAIC of a model fixing both 8s to zero
(2,989). In addition, it is also smaller than both models with one &
fixed to zero (either preference with 2,885 or error with 2,913,
respectively). This demonstrates that the full model, which as-
sumes a shift in preferences and a shift in choice consistencies as
a result of the cognitive load manipulation is best to describe the
data.

In the following the respective magnitudes of the effects of
cognitive load on preference and choice consistency are assessed.
Group-level posteriors of inequity aversion for both conditions as
well as individual parameter estimates are depicted in Figure 11.
Overall, inequity aversion a had a credible influence on choices
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Inequality against responder

Figure 10. Experiment 3 miniultimatum game: Descriptive statistics of
responder choices in the miniultimatum game. The rejection rates are
plotted for different quantiles of inequality against the responder (outcome
proposer minus outcome responder) with higher quantiles meaning higher
inequity. Small dots and squares are individual choices in the control and
load conditions, respectively. The larger dots and squares are group means,
and error bars are 95% confidence intervals.

(Cteontrol —1.10, SO = 0.10, 95% HDI [—1.30, —0.89];
Qoaa = —1.03, SD = 0.11, 95% HDI [—1.23, —0.82]). Trans-
formed on the original scale, overall inequity aversion equals 0.72.
This reflects that higher inequity between proposer and responder
outcomes leads to higher rejection rates (e.g., an offer of 25 for
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Figure 11. Experiment 3 ultimatum game: Parameter estimates of ineq-
uity aversion a (on transformed scale): The x-axis shows individual ineq-
uity aversion parameter estimates in the control condition and the y-axis
shows them in the load condition. Above and to the right of the plot are the
group posterior distributions of a in the respective conditions, including the
mean and the 95% highest posterior density interval.
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Figure 12. Experiment 3 ultimatum game: Parameter estimates of choice
sensitivity 6 (on transformed scale): The x-axis shows individual choice
sensitivity parameter estimates in the control condition and the y-axis
shows them in the load condition. Above and to the right of the plot are the
group posterior distributions of 6 in the respective conditions, including the
mean and the 95% highest posterior density interval.

the responder while keeping 75 for oneself will be rejected most of
the time according to the estimated inequity aversion). The differ-
ence between the control and load conditions is captured by 8§,
The group-level posterior distribution of 8, is not credibly differ-
ent from 0 (8, = —0.03, SD = 0.04, 95% HDI [—0.11, 0.05].
Thus, inequity aversion did not differ between the control and load
conditions on a group level. In Figure 11, points below the 45-
degree line signify lower values in the load compared with the
control condition and vice versa for individuals. Here most points
are very close to the 45-degree line, indicating that the cognitive
load manipulation had no systematic effect on inequity aversion on
the individual level. For 36 of 57 participants, inequality aversion
was stronger in the load compared with the control condition (or
9, > 0, binomial test: p = .063).

Looking at the choice variability 0, the group-level posterior
means for both conditions are 0., = —0.78 (SD = 0.11, 95%
HDI [-0.99, —0.58]) and 0,,,4 = —0.52 (SD = 0.11, 95% HDI
[—0.73, —0.31]). To put these values into perspective, we retrans-
formed the parameters to the variance scale, which results in 21.77
in the control and 30.15 in the load condition. Given the outcomes
presented, this would mean that an increase in utility from O to 10
decreases the likelihood of rejection from 50% to 32% in the
control condition and to only 37% in the load condition. The
difference in the error variance between the control and load
conditions was captured by 8, = —0.13 (SD = 0.06, 95% HDI
[—0.24, —0.02]). Because the 95% HPD interval excludes 0, the
choice inconsistency is credibly higher in the load compared to the
control condition. Figure 12 shows the group-level posteriors for 0
as well as the individual 8s separately for the control and load
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conditions. Points above the 45-degree line mean higher inconsis-
tencies in the load compared to the control condition for individ-
uals. As can be seen, a majority of participants are above the
45-degree line, or for 39 of 57 participants, choice error was higher
in the load compared to the control condition (i.e., 3, < 0,
binomial test: p = .008).

Behavioral measures and robustness. In the n-back task,
participants scored on average 83.85%, with a range from 68.35%
to 95%. Five participants had scores below the guessing rate of
75%. In the automated Ospan task, participants achieved an aver-
age score of 55.98 (range 13-75). As in Experiments 1 and 2, there
was no significant correlation between the Ospan measure or the
n-back score and the model parameters (see Appendix B).

To check for robustness of our results, we administered two
alternative other-regarding utility functions: the inequity aversion
utility function proposed by Bolton and Ockenfels (2000) and the
full Fehr and Schmidt (1999) utility model with an additional
parameter for second-order inequity aversion (see Equations 7 and
8). Table 3 shows that for both alternative utility models, choice
inconsistency increased in the load compared to the control con-
dition, thus confirming the previous results. When using a trem-
bling hand choice rule, the results also point in the same direction
(i.e., less choice error in the control compared to the load condi-
tion), but the parameter differences are no longer significant. For
the trembling hand error, there is also no effect of cognitive load
on the inequity preference parameters in any of the three utility
models. WAICs show consistently a worse fit of the trembling
hand compared to the probit models. This indicates that the effect
of cognitive load on responder behavior in the miniultimatum
game is better captured by a choice model taking numerical utility
differences into account than by a choice model that discards this
information.

To conclude, we found that cognitive load affected choice
consistency rather than fairness preference in the miniultimatum
game on both an individual and a group level. This effect is robust
to different other-regarding utility functions, but fails to show
significant differences when using a trembling hand error model.

General Discussion

To test if a reduction in cognitive capacities leads to qualitative
preference shifts, systematic increases in choice consistency, or
both, we conducted three experiments across different domains of
preferential decision making, including risky choice, temporal
discounting, and strategic interaction. Across all three experi-
ments, cognitive capacity was manipulated within subjects by
means of a dual-task paradigm where participants completed an
auditive 3-back task while making choices. A comparison of the
hierarchical Bayesian models based on WAICs showed that the
current choice data was described best when assuming changes in
both, choice consistency and preference. A more thorough analysis
based on estimating and comparing the models’ parameters re-
vealed that a reduction of cognitive capacities predominantly led to
more choice inconsistencies rather than qualitative preference
changes. These results hold on the group and individual level alike
and are robust to the alternative model specifications that we
tested. Furthermore, the results hold both for binary choices (Ex-
periments 1 and 3) and economic valuations (Experiment 2). Thus,
an increase in choice inconsistency as a result of a reduction in

Table 3

Experiment 3 Ultimatum Game: Mean Group Posterior Estimates of the Effect of Cognitive Load and WAICs for All Model Specifications

Fehr and Schmidt Full

Bolton and Ockenfels

Fehr and Schmidt

Inequity
aversion II

Inequity
aversion I

Inequity

aversion I

Inequity
aversion I

WAIC

Sensitivity

WAIC

Sensitivity

WAIC

Sensitivity

Error model

3,034 [85]

—.06 [—.15,.02]
—.11" [-.20,—.01] 2,758 [77]

—.01[—1.39, 1.37]
—.06 [—.56, .45]

—.04[—.11,.04]
—.03[—.11,.05]

3,113 [84]

—.06 [—.15,.03]

—.62 [—1.82, .44]

—.13[—1.11, .88]

3,030 [85]

—.06 [—.15,.02]
—.13"[—.24, —.03] 2,815[79]

—.04[—.12,.03]
—.03[—.11,.05]

Trembling hand

Probit

—.14" [—.25, —.02] 2,945 [80]

Inequity aversion I refers to first-order inequity aversion and Inequity aversion II refers to second-order inequity aversion as defined in the Introduction. For further model specifications see
introduction and the Method section of Experiment 1. Displayed are mean group posterior estimates and WAIC with 95% highest density intervals (HDI) or standard deviation of the WAIC in brackets.

* Significant differences between control and load condition according to the 95% HDL

Note.
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cognitive capacities seems to be so far an underappreciated effect
in preferential choice.

Our results provide a possible alternative explanation for recent
studies claiming that a reduction in cognitive capacities can lead to
preference changes. We argue that such a reduction, above all,
increases choice inconsistency and that ignoring this effect can
lead to a biased conclusion that could look like changes in pref-
erences. Yet, unlike the studies cited in the introduction, the
current studies did not find differences in choice proportions or
valuation between the control and load conditions. This difference
might be explained by the stimulus environment. The choice
proportions, for example, in the risky choice experiment were very
close to 50% for the safer and the riskier option in the control
condition. In such an environment, an increase in choice error
changes choice proportions symmetrically, whereas if choice pro-
portions are lower or higher, an increase in choice error can drag
choice proportions closer to 50% in a nonsymmetrical way. More-
over, a valuation task, as was used in the temporal discounting
task, might not, in general, be prone to the problem of confusing
choice consistency with preference shifts, because choice incon-
sistencies in the valuation task are arguably symmetrical (except
for valuations at the margins). In sum, an observed group differ-
ence between control and load conditions might be mainly due to
biased choice stimuli in the control group, and a modeling ap-
proach can help show the underlying effect of cognitive load on
economic choices and valuations regardless of the stimulus envi-
ronment.

Evidence for this view comes from the parameter recovery study
(see Appendix A). Here, we manipulated choice proportions either
as being at 50% (as in the risky choice experiment) or as deviating
from 50%. In line with our reasoning above, differences in choice
proportions due to a shift in choice consistency were only observed
frequently when choice proportions in control deviated from 50%.
Yet, even when a significant shift in choice proportions occur, our
modeling framework can still distinguish between a shift in pref-
erences and a shift in choice consistency.

To corroborate this simulation-based result, we also applied our
model to a previously published data set that manipulated cogni-
tive load and found a difference in choice proportion (Hinson et
al., 2003). As described in the section about temporal discounting,
Franco-Watkins et al. (2006) have previously reanalyzed the data
and found evidence for an increase in choice inconsistencies.
Using our modeling framework with hyperbolic discounting as the
original authors, but—unlike them—adding a probit choice func-
tion to it and estimating the parameters in a hierarchical Bayesian
approach, we conclude that the difference between the discounting
parameters in the two conditions is not credibly different from 0
B, = —0.06 [—0.15, 0.02]), whereas the difference in choice
consistency differs from 0 (8, = —0.10 [—0.17, —0.02]). Thus,
unlike the authors of the original article but in line with the
analysis of Franco-Watkins et al. (2006) our modeling approach
shows that the observed effect is predominantly due to a shift in
choice inconsistency and not a shift in preferences. This shows that
the presented modeling approach can distinguish between shifts in
choice inconsistencies and shifts in preferences even when
the observed choice proportions differ between the control and the
load condition. Thus, especially when choice proportions in the
control condition deviate from 50%, merely analyzing differences
in choice proportions or modeling the data without accounting for

choice inconsistencies is not sufficient to detect genuine prefer-
ence shifts.

Changing Preferences

Why should preferences change due to a reduction in cognitive
capacities, as claimed by many recent studies described in the
introduction? One possibility is that people become more impul-
sive or less self-controlled following a reduction in cognitive
capacities. This idea is especially popular in food choice and
temporal discounting studies (Hinson et al., 2003; Shiv & Fe-
dorikhin, 1999). Here, it is argued that the affective or impulsive
choice differs from the rational one (e.g., money now vs. tomorrow
or cake vs. fruit). However, in other domains it is less obvious
what an impulsive or rational choice could be: It appears plausible
that more impulsive behavior in risky decision making corre-
sponds to more choices of the riskier option. Likewise, impulsive
behavior might also imply higher rates of rejection of unfair offers
in strategic interactions. However, these conjectures appear less
credible and opposite predictions are conceivable.

A more general explanation of why preferences might change is
that cognitive load leads to qualitative changes in the underlying
decision strategy. From the perspective of adaptive decision mak-
ing (Payne, Bettman, & Johnson, 1993), people could apply an
expected utility maximization strategy under full cognitive capac-
ities, whereas with reduced cognitive capacities they might switch
to simpler and cognitively less demanding choice strategies or
heuristics. By ignoring some information and using less integrative
steps, such a switch in strategies could systematically change
choice behavior and thus parameters capturing preferences.

How general are our findings given the specific manipulation of
cognitive load we used? The manipulation of cognitive capacities
using an auditive 3-back task is thought to exert a high cognitive
load (for a 2-back task as high cognitive load, see Perlstein, Dixit,
Carter, Noll, & Cohen, 2003). Yet, weaker or even stronger ma-
nipulation of cognitive capacities could be used (e.g., a 2- or a
4-back task). Could a weaker or stronger manipulation lead to
preference changes that we did not observe in our studies? A very
mild manipulation would most likely fail to restrict at least some
people’s working memory, such that some people would not
change their behavior at all. In contrast, when using an extremely
strong manipulation it appears likely that people would have a hard
time expressing any valid preference. In the most extreme case,
choice consistency would be at a minimum and response behavior
would be completely random. In between these extremes, how-
ever, there might be levels of cognitive load that lead to strategy
switches. One could imagine that a steady increase of working
memory load would increase choice inconsistency with a given
strategy to the point where performance is so bad that people
switch to a less demanding strategy that reduces inconsistencies
compared with the more complex strategy (for the adaptivity of
such a switch under time pressure, see the simulation in Payne,
Bettman, & Johnson, 1988). On the other hand, Worthy, Otto, and
Maddox (2012) showed that people changed their learning strate-
gies in a dynamic decision-making task when under cognitive load,
yet not in an adaptive way. This means strategies were different in
a control compared to a load condition, regardless of the reward
structure in the environment.
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Such strategy-shift analyses need to identify plausible strategy
shifts before the experiment in order to design stimuli that distin-
guish between strategies. Given the plethora of heuristics and
strategies in the three preferential choice domains examined here,
it is beyond the scope of our analysis to examine strategy shifts
exhaustively. Yet, we deem it a very interesting question to ex-
amine in further studies whether there can be strategy shifts due to
cognitive load, whether there are similarities in these shifts across
different domains, and whether these shifts are adaptive. In the
current study, we used a widely accepted manipulation to reduce
cognitive capacities and a variety of standard utility-based choice
models in different domains to conclude that changes in behavior
could be better explained by an increase in inconsistencies than a
shift in preferences. However, in principle this increase in incon-
sistency could also be explained by a qualitative strategy shift.

Cognitive Capacity Reductions More Broadly

Although we used a simultaneous task design, the current find-
ings might also be relevant for situations where cognitive capacity
is reduced through different means, for example, in a sequential
task design: In a study by Freeman and Muraven (2010), partici-
pants watched a mute video and had to rate the actress’ facial
expression (see Experiment 2). At the same time they saw common
English words on the screen, which they explicitly had to ignore in
the load condition (referred to as the “depletion” condition by the
authors). In a second step of the experiments, all participants had
to pump a (digital) balloon to earn money, facing an increasing risk
of the balloon bursting and themselves receiving nothing (BART
task). Analyzing the choice pattern, the authors concluded that the
depletion task led to an increase in risk-seeking behavior. A
common explanation for this effect is to assume a reduction in
self-control due to performing the preceding task (the strength
model or ego depletion, e.g., Baumeister, Vohs, & Tice, 2007).

Our results with simultaneous task manipulations offer a new
hypothesis to consider: Rather than a systematic loss of self-
control and hence a qualitative shift in preferences toward more
risky choices, the observed behavior could also be (partly) due to
an increase in choice inconsistency. This alternative explanation
might also be interesting in light of the recent debate about the
effectiveness of sequential task manipulations: Although a meta-
analysis by Hagger, Wood, Stiff, and Chatzisarantis (2010) found
an overall significant effect size, in a reanalysis Carter and Mc-
Cullough (2014) came to the conclusion that the effect size cannot
be distinguished from 0. Looking more closely at the dependent
task in the sphere of choices, we see that some studies measured
preferences (e.g., Freeman & Muraven, 2010; Joireman et al.,
2008) whereas others measured, for example, susceptibility to the
attraction effect (Masicampo & Baumeister, 2008). Taking our
results into account, we would expect an effect of the manipulation
on a choice consistency parameter (which could in general affect
susceptibility to context effects), rather than on a preference param-
eter. Distinguishing these fundamentally different dependent mea-
sures in a mathematical model might lead to a better understanding of
the effect of the sequential task manipulation on choices.

Finally, a more general approach could examine how decision
errors and preference shifts are related to different classes of
manipulations, such as sequential or simultaneous approaches.
When considering that the two manipulations follow different

theoretical constructs (working memory capacity vs. self-control),
a systematic examination seems worthwhile. In addition, also time
pressure, stress, and sleep deprivation arguably reduce cognitive
capacities. For this more general perspective, our results make an
important contribution to the study of reduced cognitive capacities
in decision making as they offer a parsimonious explanation of
effects reported in different areas (see Johnson, 2008).

Testing Stochastic Choice Rules

Whereas many axiomatic choice theories have neglected the
stochastic element of choice (e.g., Von Neumann & Morgenstern,
1944), at the same time psychology and economics have a long
tradition in the development of stochastic choice models (e.g.,
Luce, 1959; Train, 2003). Choice rules are important because
empirical research has shown that choice behavior is probabilistic
in that people do not always make the same choice even in nearly
identical choice situations (Hey, 2001; Mosteller & Nogee, 1951).
When explicitly modeling this variability, researchers have to
make an assumption on where the random component affects the
decision process: Loomes, Moffatt, and Sugden (2002) distin-
guished randomness in assigning utility to options, randomness in
comparing different options with each other, and randomness in
the implementation of a decision. The first approach is best char-
acterized by random utility models (e.g., Becker, DeGroot, &
Marschak, 1963; Train, 2003). In these models, utility itself is a
random variable. This can be motivated by the assumption that
people estimate utilities with respect to different aspects of an
option. The second approach assumes fixed utility but a choice
function that introduces randomness in the comparison stage (e.g.,
Becker et al., 1963; Bridle, 1990; Luce, 1959). Finally, a trembling
hand error—adding the probability of choosing the inferior of two
options independent of the difference in expected utilities of the
options—is an example of randomness in choice implementation
(Harless & Camerer, 1994; Selten, 1975).

Which decision process model is most accurate is an empirical
question and the subject of active debate. Blavatskyy and Pogrebna
(2010), for example, examined different stochastic choice models
and concluded that a Fechner model with heteroscedastic and
truncated random errors fit data better than a Fechner model with
homoscedastic error components. Using a probit or a trembling
hand model is definitely limiting as, for example, they fail to
account for context effects (Wilcox, 2015). Context effects occur
if choice behavior depends on the choice set presented, and
Rieskamp, Busemeyer, and Mellers (2006) summarized empirical
evidence for it. Our approach here, however, was not meant to find
the theory that describes the data best. Rather, we used two
relatively simple stochastic choice models (probit and trembling
hand) to measure the relative influence of systematic changes in
preference and choice consistency, respectively. Yet, the exami-
nation of the effect of a reduction in cognitive capacities on more
complex choice models might also be warranted.

Reduced Cognitive Capacities in the Real World

In general, the dual-task design implemented in our work is
meant to capture a ubiquitous phenomenon in our daily life,
namely, decision making under reduced cognitive capacities. Cog-
nitive capacities can be limited for many reasons, such as multi-
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tasking, stress, sleep deprivation, alcohol consumption, or a lack of
motivation (e.g., Anderson & Dickinson, 2010; Morgado et al.,
2015). Because people have to make decisions under such circum-
stances quite frequently, it is an important question how behavior
might differ compared to behavior in situations with full cognitive
capacities.

What would one expect to happen when making decisions under
reduced cognitive capacities in real life? One prominent answer
comes from the nudge program (Thaler & Sunstein, 2008), which
suggests that people do not always make decisions in line with
their (long-term) goals and sometimes need assistance to improve
or “debias” their decisions. Taking our results into account, how-
ever, there is no indication of a need for debiasing preferential
shifts under reduced cognitive capacities because deviations from
true preference can equally likely go in either direction (e.g., more
or less risk taking). Rather, one would expect participants to
be less predictable in their choice behavior under reduced cogni-
tive capacities. This might be bad when people make a decision
once and most likely stick to this decision for a long time as, for
example, in retirement savings decisions. As a result, many people
do not save according to their true preferences for future consump-
tion (Skinner, 2007). On the other hand, looking at repeated small
decisions such as in grocery shopping, deviations from true pref-
erences might cancel out after many bargains. In addition, deviat-
ing from a previous choice might be advantageous in that it boosts
learning in changing environments. Hence, our results explain why
people sometimes make inconsistent decisions and we predict
seeing these inconsistencies more often when cognitive capacities
are reduced.

The present study was designed to unify research on decision
making in preferential and economic choice with recent work on
the effect of cognitive capacity limitations. The mathematical
modeling approach that we used can be applied, in principle, to all
domains of preferential choice as long as preferences can be
mathematically specified. Furthermore, the models allow explora-
tion of the cognitive similarities and differences between manip-
ulations such as cognitive load, ego depletion, time pressure, and
sleep deprivation, among others. Thus, research in the field of
reduced cognitive capacities can profit from the mathematical
approach presented here, that is, an explicit formulation of both the
underlying preferential choice model and the stochastic choice
rule.
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Appendix A

Model Recovery to Distinguish Choice Inconsistency From Preference

We conducted a simulation to show the general ability of our
model to distinguish between shifts in preferences and shifts in
choice inconsistencies. Therefore, we used the 400 trials we cre-
ated for the first experiment and extracted the average parameter
values for risk preference (M, = —0.05) and choice sensitvitiy
(Mgepsirviniy = —1.68) from the experimental data assuming a linear
utility and a probit choice model as explained in the main text.
With these data we created two times 80 choices for 40 synthetic
participants in two conditions. In the control condition we created
choices based on the average parameter values. For the load
condition we changed either the preference or the choice incon-
sistency parameter in the magnitude of one standard deviation
(SDp,.r = 0.08, SDg,, iy = 0.28) to simulated shifts in prefer-
ences or choice inconsistencies. The standard deviations were
taken from the empirical distributions of individual parameter
estimates of the first experiment.

To fit the simulated data we used the hierarchical Bayesian
model as described in the Method section of Experiment 1, using
a linear utility and a probit choice function. In total we ran the
simulation and the following model recovery analysis 100 times.
We implemented two types of choice sets with the aim of dem-
onstrating the robustness of the approach under conditions both
where the choice proportions under control were around 50% and
where they were biased away from 50%. For the first choice set,
we implemented a set of choices across the whole spectrum of
expected value (EV) differences between the safer and the riskier
option (see Experiment 1 Method section). The upper row in Table
Al, table in the Appendix A shows the results. First, we checked
whether choice proportions were different in the control compared
with the load condition by means of a paired #-test. Choice pro-
portions differed in only 11 out of 100 simulations when choice

Table Al

consistency was manipulated, but did so in all cases when risk
preferences were changed. The 11 significant choice proportion
differences with simulated sensitivity shifts resulted from unlikely
choice proportions relatively far away from 50% in the control
condition, which were then dragged towards 50% due to a higher
simulated noise in the load condition. For the parameter recovery,
we applied the 95%-HDI approach and classified a recovered
parameter shift whenever the 0 were excluded from this interval in
the posterior distribution of parameter differences. We conclude
that the difference in the true parameter can be recovered perfectly
and that in less than 5% of the cases the unchanged parameter was
estimated to be different.

In a second step, we created a choice set where choice
proportions were different from 50% in the control condition by
using choice situations where the riskier of the two options had
a much lower expected value than the safer option. This re-
sulted in a low choice proportion of the risky option of 36%.
Here, we observed that both a shift in choice inconsistency as
well as a shift in preferences change choice proportions in a
systematic way. Significant differences in choice proportions
were always a shift from below 50% (mean control 36%)
towards 50%. The mean choice proportion in the load condition
was 42% for a simulated increase in choice inconsistency and
49% for a simulated shift in risk preference. This is the case
because more inconsistencies result in a choice proportion in
the control condition closer to a chance level of 50%. Also, with
this choice set, the true source of difference can be distin-
guished almost perfectly. The risk of concluding from our
modeling framework that the actually unchanged parameter
shows a significant difference is small (below 10%).

Simulation Risky Gambles: Choice Proportion Differences and Recovered Parameter Differences in 100 Simulations

Simulate sensitivity shift

Simulate preference shift

Difference Recovered Recovered Difference Recovered Recovered
Stimuli choice prop. risk shift sensitivity shift choice prop. risk shift sensitivity shift
Unbiased (50% in control) 11% 3% 100% 100% 100% 2%
Biased (36% in control) 94% 1% 99% 100% 100% 7%

Note.

Data were simulated and recovered by a model with linear utility and a probit choice function. For additional model specifications see introduction

and the Method section of Experiment 1. Significant differences in choice proportions were assessed with a paired r-test at the 1% significance level.
Significant differences in model parameters between control and load condition were inferred according to the 95%-HDI criterion.

(Appendices continue)
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Appendix B

Correlations of Model Parameters With Behavioral Measures

Table B1
Experiment 1 Risky Gambles: Correlations of Model Parameters With Behavioral Measures
Variable/Parameter N-back Ospan RT\0od—RT . nivo1 Preference B preference Sensitivity Bensitivity
N-back —
Ospan .19 —
RTload_RTcomrol =17 .08 -
Preference .20 .23 .09 —
B preference 12 .03 12 .06 —
Sensitivity -.07 -.21 —.43™ —-.05 .09 —
B ensitivity —.14 15 .06 21 —.43™ .00 —
Note. Model parameters are taken from a power utility with probit error model as described in the main text.
p < .01
Table B2
Experiment 2 Temporal Discounting: Correlation of Model Parameters With Behavioral Measures
Variable/Parameter N-back Ospan RT\,i—RT conivor Preference O preference Sensitivity B ensitivity
N-back —
Ospan —=.07 —
RTload_RTcomrol -3 .03 -
Preference .26 .14 —-.25 —
B preference -.20 .07 13 .07 —
Sensitivity -.29 -.21 31° —.63"" -.02 —
B ensitivity .05 -.09 .08 .06 —.52" .03 —

Note. Model parameters are taken from a one-parameter hyperbolic discounting function and a normally distributed error around the discounted outcome
as outlined in the main text.
p<.05. "p<.001.

Table B3
Experiment 3 Miniultimatum Game: Correlation of Model Parameters With Behavioral Measures
Variable/Parameter N-back Ospan RT\00a—RT . oniror Preference S preference Sensitivity S ensitivity
N-back —
Ospan .01 —
RTload_RTcontrol —.37" .02 -
Preference .10 —.02 —.14 —
B preference 11 -22 12 —.01 —
Sensitivity .00 —-.15 —-.08 30" .06 —
B ensitivity —.13 —.15 —.05 -.09 —.13 12 —

Note. The model parameters are taken from the first-order inequity aversion model of Fehr and Schmidt (1999) combined with a probit error model as
described in the main text.
“p<.05 Tp<.0lL
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