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The Psychophysics of Number Integration: Evidence From the Lab

and From the Field

Benjamin Scheibehenne
University of Geneva

The subjective integration of numbers that are encountered sequentially is an elementary
judgment process that is highly relevant in research (e.g., in a decisions from experience
paradigm) and in everyday life alike (e.g., when keeping track of spending during a
shopping trip). Toward a better understanding of how people perceive and integrate
numerical information, participants in a laboratory experiment (n = 40) repeatedly esti-
mated the sum of a number sequence briefly presented on a computer screen. Results
indicate a systematic bias toward underestimation that could be captured with a compres-
sive power function. The observed underestimation depended on the sequential order in
which the numbers were presented but not on the shape of the underlying frequency
distribution. Similar results were obtained in a field study where customers in a grocery
store (n = 966) systematically underestimated the total value of their shopping basket prior
to checkout. A model comparison approach revealed that the observed underestimation in
the lab study was best captured by a compressed mental number line when evaluating single
items, while in the field study, the bias rather stems from a systematic error during
information integration. The field study further indicated that underestimation increased
with age but was not due to a simple rounding strategy or the systematic forgetting of
unhealthy items such as sweet or fatty snacks. The results yield novel insights into how

people perceive and integrate numbers.

Keywords: psychophysics, number estimation, mental arithmetic, consumer behavior,

mathematical intuition

The subjective perception and integration of
discrete numerical information is an elementary
cognitive process that is highly relevant for
research in psychology, cognitive science, and
economics alike (Anderson, 1981; Ashcraft,
1992; Dehaene, Spelke, Pinel, Stanescu, &
Tsivkin, 1999). The mental arithmetics that
govern information integration also provide the
basis for measures such as expected utility and
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the evaluation of monetary gambles that are
fundamental for many theories on judgment and
decision making (Anderson, 1996; Stewart,
Chater, & Brown, 2006). Finding approximate
solutions to arithmetic problems without com-
puting the exact answer is an important compo-
nent of mathematical cognition (Ashcraft, 1992;
Dehaene et al., 1999). Number integration also
occurs in many everyday situations where in-
formation is accumulated over time. For exam-
ple, in a consumer context, purchase decisions
often depend on price estimations (Alba, Bro-
niarczyk, Shimp, & Urbany, 1994), and keeping
track of spending during a shopping trip or at a
restaurant can help prevent overspending
(Heath & Soll, 1996). Given the importance of
this ability, it is important to better under-
stand how people perceive and aggregate se-
quentially presented numerical information
and what factors influence their estimation
accuracy.
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Factors That Influence Estimation
Accuracy

Research on psychophysics indicates that
subjective perceptions are often well-described
by compressive power functions of objective
values (Stevens, 1957). Compressive functions
imply a tendency for underestimation that gets
stronger as the objective values grow larger.
This scaling has also been applied to the mental
representation of numbers (Longo & Lourenco,
2007), and it is commonly used to capture the
subjective utility of money in an economic con-
text (Bernoulli, 1738/1954; Kahneman & Tver-
sky, 1979, 1984). In line with this, customers at
a grocery store were found to systematically
underestimate the total value of their shopping
baskets (van Ittersum, Pennings, & Wansink,
2010).

According to information integration theory
(Anderson, 1981), observed underestimation on
a behavioral level could be caused by two qual-
itatively different cognitive processes. It could
either occur during valuation, suggesting a com-
pressive mental scaling of single numerals, or it
could occur during integration, suggesting a lin-
ear scaling in combination with a systematic
integration error. The former case (“scaling
first”) can be formally described as a sum of
compressed numbers (i.e., 2 flx], where fis a
scaling function and x is a sequence of num-
bers), whereas the latter (“sum first”) assumes a
bias during integration (i.e., f[% x]). To account
for underestimation, researchers typically im-
plement a power function with an exponent 6 <
1, sometimes in combination with a linear scal-
ing factor or “proportionality constant” w (e.g.,
Stevens, 1957):

fxy=w-x’ ey

Implemented this way, the qualitative differ-
ence between the scaling first and the sum first
model can be illustrated based on a simplified
case of two sequences that have equal sums but
different addends (e.g., {50;50} and {1;99}).
Here, the sum first model necessarily makes
identical predictions irrespective of the specific
parameters values, while the scaling first model
makes different predictions for both sequences
as long as the exponent does not equal exactly
one or zero.! Likewise, it becomes easier to
distinguish both models if the scaling is more

compressed (i.e., the exponent becomes smaller
than 1).

Empirical evidence supporting compressed
mental scaling comes from experiments using
nonsymbolic numerosities such as clouds of
dots presented on a screen (Dehaene, 2007,
2009). On the other hand, research using sym-
bolic numbers (i.e., written Arabic numerals)
often finds linear scaling, at least for adult
Western populations (Dehaene, Izard, Spelke,
& Pica, 2008; Siegler & Opfer, 2003). How-
ever, as symbolic numbers lend themselves to
exact counting and adding operations, linear
scaling might not necessarily apply to mathe-
matical intuition and approximate numerosity
(Dehaene, 2007).

Besides mental scaling and integration func-
tions, estimation accuracy may also depend on
the serial order in which information is pre-
sented. Past research has found evidence for
both primacy and recency effects such that stim-
uli presented at the beginning and/or the end of
a sequence received higher weight (Hogarth &
Einhorn, 1992). When estimating the product of
a sequence of numbers, primacy or “anchoring”
effects seem to prevail (Tversky & Kahneman,
1974), suggesting that sequences starting with
relatively low numbers are more likely to be
underestimated. Research in which participants
estimated the mean of a number sequence often
found recency effects, especially for short se-
quences (e.g., Brezis, Bronfman, & Usher,
2015; Tsetsos, Chater, & Usher, 2012). To for-
mally model such order effects, so-called serial
position curves can be estimated that assign a
weight to the information depending on its po-
sition in the sequence (Anderson, 1996).

Estimation accuracy for a sequence of num-
bers may also depend on the shape of the un-
derlying frequency distribution. Experimental
evidence from research on risky choices indi-
cates that preferences critically depend on the
distribution of values that people experienced in
the past (Stewart, 2009). Likewise, grocery
shoppers can be influenced by the skewness of
product prices over time (Niedrich, Weathers,
Hill, & Bell, 2009). Such patterns can be ex-

! Technically, for the simplified example at hand, one can
find a parameter combination where both models make
identical predictions. As the number and the length of
sequences increase, the models can be more rigorously
distinguished.
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plained by several theoretical accounts includ-
ing the decision by sampling theory (Stewart,
2009) and the range—frequency model (Par-
ducci, 1965), and they align with early research
on perception showing that negatively skewed
distributions (many large and few small values)
lead to lower mean estimates compared to pos-
itively skewed distributions (Parducci, Thaler,
& Anderson, 1968). Finally, possible over- and
underestimation may also be due to simplifying
strategies such as rounding numbers up or down
prior to adding them (Lemaire, Arnaud, &
Lecacheur, 2004; van Ittersum et al., 2010).

Thus far, past research commonly tested
these factors in isolation, which makes it diffi-
cult to evaluate their relative importance. A
better understanding of how people integrate
sequential information requires a design that
tests these influences conjointly. Toward this
goal, I conducted two studies: a laboratory ex-
periment in which participants estimated the
sum of a sequence of monetary values presented
on a computer screen, and a field study in which
customers at a grocery store estimated the total
value of their shopping baskets prior to check-
out.

Laboratory Experiment
Method

Local university students (N = 40; Mdn age =
21 years; SD = 5.7; 33 females) participated in
the experiment in exchange for course credit.
The sample size was determined prior to con-
ducting the study. No variables or experimental
conditions were dropped. Each participant re-
peatedly estimated the total sum of 24 numbers
described as the prices of fictitious items in a
shopping basket. The numbers were sequen-
tially displayed on a computer screen for 0.5 s
each, similar to in the Japanese game ‘“flash
anzan” (Bellos, 2010). The rapid presentation
has been used in previous research. In addition
to the summation task at hand, participants in
these previous experiments either estimated the
mean (e.g., Brezis et al., 2015; Bronfman et al.,
2015; Malmi & Samson, 1983; Tsetsos et al.,
2012), chose between sequences (e.g., Tsetsos
et al., 2012; Zeigenfuse, Pleskac, & Liu, 2014),
or tried to reconstruct the underlying frequency
distribution (e.g., Goldstein & Rothschild,
2014).

After observing each sequence, participants
typed in their best estimate for the total sum
before proceeding to the next trial. The short
presentation time inhibited the application of
exact arithmetic strategies but rather required an
intuitive approximation. For each sequence, the
shape of the underlying frequency distribution,
the sequential order in which the numbers were
displayed, and the range of these numbers were
subject to experimental manipulation. The
shape of the distribution was either uniform,
positively skewed, negatively skewed, unimodal,
or bimodal. The sequential order was either in-
creasing, decreasing, U-shaped, or inversely U-
shaped. The numbers ranged from 0.1 to either
5 (average sum = 66), 15 (average sum = 199),
or 25 (average sum = 331).% For each sequence,
a small amount of random noise (£ 10% of the
respective upper range, uniformly distributed)
was added. Combining these factors led to 5 X
4 X 3 = 60 different sequences. Each partici-
pant also saw 15 “baseline” sequences with
uniformly distributed random numbers scat-
tered around 2.8, 8.3, or 13.8, the mean within
each number range. Due to the way the se-
quences were constructed, the true sum was
comparable across all conditions except for the
negatively skewed distributions where the sum
was slightly higher, and the positively skewed
distributions where the sum was slightly lower
than average. All numbers were rounded to two
decimal places. Likewise, participants could
also enter their estimates with up to two decimal
places. Sequences were presented in random
order in a within-subject experimental design.

At the end of every 10th round, participants
received feedback about their mean estimation
accuracy in the preceding rounds, expressed as
the percentage by which their estimate deviated
from the true sum. As facilitation toward sub-
jectively estimating the sum rather than actually
adding the exact numbers, participants also
completed a secondary working memory task
that required them to memorize four randomly
drawn capital letters that were displayed before
each trial and had to be recalled in correct order
at the end of each trial.

To incentivize accuracy, participants re-
ceived a bonus at the end of the experiment that

2 The Appendix displays the trajectories and frequency
distributions of all presented sequences.
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was determined by multiplying their mean ac-
curacy across all rounds by the number of trials
in which they accurately remembered the letter
sequence. This number was divided by 10 and
then paid out in Swiss francs (CHF; 1 CHF =
approximately 1.1 U.S. dollars).

The accuracy of participants’ estimations (y)
was quantified as a bias measure indicating
over- or underestimation proportional to the
true sum (y):

y—y
y

bias =

e))

This measure is similar to the (exponential)
signed order of magnitude error that is some-
times reported in the literature (e.g., Brown &
Siegler, 1992).

For 16 of the 3,000 observations, the bias was
larger than 1. Closer inspection of these cases
suggests that they often occurred because par-
ticipants mistakenly entered one digit too many
when typing in the true sum. Thus, they were
coded as missing prior to data analysis.

Results

Overall, 65% of all sequences were underes-
timated.® The mean bias across participants was
—.055 (SD = .066; Cohen’s d = 0.8), and for
35 of 40 participants, the bias was negative,
indicating underestimation. This proportion of
participants was highly unlikely under the null
hypothesis of no bias as indicated by a binomial
test (p < .001). The corresponding Bayes factor
(BF) was greater than 10,000, indicating ex-
treme evidence for the alternative hypothesis
(Rouder, Speckman, Sun, Morey, & Iverson,
2009).

Estimating Stevens’s power law. To test
if underestimation became stronger for higher
sums, as predicted by Stevens’s power law, a
mixed effects regression with random intercept
and slope was estimated on the log-transformed
data by means of the Ime4 package in R (Bates,
Maechler, Bolker, & Walker, 2014). Using log-
transformed data solved potential biases due to
the skewed distribution of both true and esti-
mated values and the resulting heteroscedastic-
ity in the data. Results yielded an intercept (i.e.,
a proportionality constant) of 1.1 and an expo-
nent of 0.97. These results indicate that under-

estimation became slightly stronger for higher
sums. For the lowest quintile, participants on
average underestimated the true value by about
3.4%, while for the highest quintile it was about
7.7%. Figure 1 illustrates this relationship. Fig-
ure | further shows that the estimation error
(i.e., Iy — yl) increased with the true sum, hence
revealing a magnitude effect (Ashcraft, 1992).

Factors that influence the estimation bias.
Figure 2 plots the mean estimation bias sepa-
rately for different sequential orders and for
different frequency distributions. As can be
seen from the figure, the bias varied depending
on the sequential order. Underestimation was
most pronounced for increasing and U-shaped
sequences that both end with high numbers,
while decreasing and peaked sequences that end
with low numbers were estimated more accu-
rately. Together, these patterns suggest rela-
tively stronger underweighting for numbers ap-
pearing at the end of the presented sequences
and hence a primacy effect. Figure 2 further
illustrates that the bias was independent of the
underlying frequency distribution.

To further corroborate these findings across
experimental conditions on statistical grounds, I
fit a mixed-effects regression model to the data
with random slopes and intercepts across par-
ticipants for the true sum and random intercepts
for each sequence and each distribution level.
All data except the baseline condition were in-
cluded to make sure that each sequence level
was combined with each distribution level in the
data.

In a first step, I estimated a baseline model
with the intercept as a fixed effect, thus assum-
ing a constant bias across all sequences. In
comparison to this, an extended model that in-
cludes the true sum as an additional predictor
(fixed effect) yields a Bayesian information cri-
terion (BIC) difference of 5, which translates
into a BF of 12. Thus, in light of the data, the
extended model became 12 times more likely
than the baseline model, x*(1) = 12.8; p <
.001. As shown in Table 1, the estimated beta
coefficient for the true sum was negative, indi-

3 The raw data can be downloaded at https://osf.io/2xaum/
along with an R-script that reproduces the statistical analy-
ses and figures presented in this article.
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Table 1
Fixed Effect Estimates and Model Comparison for the Laboratory Experiment”
Model
Predictors Baseline 1 2 3 4
Fixed effects
Intercept —3.86 —1.08 —4.93 —5.13 —4.65
True sum/100 —3.88 —4.02 —4.02 —4.15
Trial position 8.85 8.76 8.77
Sequential order
Decreasing 3.18 3.18
Peaked 2.96 2.96
U-shaped —1.34 —1.34
Distribution
Positive skew -.29
Negative skew .86
Unimodal .02
Bimodal —.36
Model fit
BIC —1274 —1279 —1348 —1351 —1322
log(Likelihood) 664.3 670.6 709 722.3 723.2
Bayes factor
Model/Baseline — 12 >10,000 >10,000 >10,000
Model/Model 1 — >10,000 >10,000 >10,000
Model/Model 2 — 5 <1
Model/Model 3 — <1

Note. BIC = Bayesian information criterion.

# Fixed effect coefficients are reported as standardized scores (i.e., estimate/standard error).

experiment as an additional predictor (BIC dif-
ference = 69; BF >10,000; x*(1) = 76.8; p <
.001). Here, the coefficient was positive, indi-
cating a learning effect: Despite the sparse feed-
back, participants were less biased for trials
presented at the end of the experimental session.
Adding the sequential order of the presented
numbers within each trial (i.e., “increasing,”
“decreasing,” “u-shaped,” and “inversely u-
shaped”) as a predictor in the model further
improved fit. The difference in BIC between
this model and the previous one that included
just the true sum was 3, BF = 5; X2(3) = 26.6;
p < .001. This result corroborates the differ-
ences shown in Figure 2.

Adding the shape of the frequency distribu-
tion or any higher moments (variance, skew-
ness, and kurtosis) as additional predictors did
not yield a further improvement in model fit as
measured by BIC differences, indicating that
the estimation bias did not credibly depend on
the underlying frequency distribution, as also
shown in Figure 2. Furthermore, underestima-
tion also did not depend on the proportion of

numbers with “low” cent endings (i.e., 0—49
cents), thus rendering the explanation of a
rounding-down strategy less likely. The bias
was also independent of the proportion of
1-digit numbers within each sequence. Thus,
the underestimation was not due to missing
large numbers. The proportion of 1-digit num-
bers were highly correlated with the total sum,
however, which reduces the power to rigorously
test this explanation with the data at hand.
The estimation bias and the estimation error,
(i.e., Ibiasl) were independent of the accuracy in
the dual letter task, indicating that participants
did not systematically trade off accuracies in
both trials. The low correlation may be partly
due to a sealing effect in the letter task with a
median of 67 out of 75 correct answers (inter-
quartile range 62 to 69 correct answers).
Number integration model. To test if the
underestimation occurs at the level of individual
items (“scaling first” model) or when integrat-
ing (“sum first”), both models were imple-
mented in a hierarchical Bayesian framework.
As the previous analysis indicated an influence
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of the sequential order, both models also incor-
porated a serial weighting vector w (Anderson,
1981). For the scaling first model, the estima-
tion response ¥ of a single participant i for a
number sequence j was modeled as

9= wi-x") + e, 2

where ¢€; represents a normally distributed error
term. Likewise, the sum first model was imple-
mented as

9i=[2 wi-xp]” + e 3)

For both models, the weighting vector was a
linear function of the serial position vector s. In
its simplest form, the weighting consists of just
a constant or intercept 30 that is independent of
the serial position:

w; = B30; 4

Assuming that numbers are under- or over-
weighed depending on their position within the
sequence (hence allowing for either primacy or
recency effects) requires a linear weighting vec-
tor where the relative weight is a function of the
serial position:

w; = B0; +B1;-s (5)

An even more flexible model that allows for
both primacy and recency effects can be imple-
mented by means of a quadratic function:

w; = B0; + Bl;* s + B2 * s> (6)

Polynomials of higher degree were not con-
sidered here because their shape becomes in-
creasingly difficult to interpret on theoretical
grounds.

Bayesian model implementation. Prepara-
tory model recovery analyses indicated that the
experimental design allowed distinguishing the
scaling first and the sum first models across a
wide range of possible parameter values on the
level of individual participants. To improve es-
timation efficiency, the serial position s was
normalized (M = 0, SD = 1) prior to entering
the model and the models were estimated on the
log-transformed data, including the baseline
condition. The priors on the individual-level

parameters (i.e., the exponent 6 and the respec-
tive 3 parameters) were normally distributed
with means and standard deviations that were
partially pooled through weakly informative
normally distributed priors on the group level.
The prior group-level means for B0 and 6 were
set to zero; for B1 and 32 the group-level means
were set to one. The prior standard deviations
for these group-level distributions were all set to
five. The group-level priors for the standard
deviations on an individual level were half-
cauchy distributed with location parameter zero
and scale parameter two. Finally, the likelihood
function was normal with a half-cauchy (0,2)
prior on the standard deviation. Posterior esti-
mates were obtained with the Stan software
(Stan Development Team, 2015) that was called
from R.* The sampling procedure within Stan
was efficient after some thinning was applied
(i.e., R-hat <1.01).

Model estimation. Table 2 provides an
overview of the fit (log-likelihood) and the pre-
dictive accuracy for the different models. The
latter was measured with the approximate leave-
one-out cross-validation information criterion
(LOOIC; Vehtari, Gelman, & Gabry, 2015) and
the widely applicable information criterion
(WAIC; Watanabe, 2010) that both take model
complexity into account. As can be seen from
the table, all three measures indicate that “scal-
ing first” models explain the data better than
“sum first” models, irrespective of the specific
type of weighting function that was used.
Across all model implementations, the mean
estimate of the exponent () was credibly
smaller than zero as indicated by a Bayesian
95% confidence interval. The model estimates
were not driven by the choice of priors as a
model estimate with no priors using STAN
yielded similar results. Together, this provides
evidence for compressive mental scaling of sin-
gle numerals prior to integration.

The model comparison further shows that
models with a quadratic weighting vector (i.e.,
Equation 6) provide a better explanation of the
data than models with linear or constant weight-
ing, confirming that sequential order influenced
estimation accuracy. The estimated quadratic

*The Stan code and the respective R function to run the
models are also available in the online repository at https://
osf.io/2xaum/
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Table 2
Quantitative Measures of Model Fit for the Lab Study
Model
Sum first Scaling first

Serial weighting None Linear Quadratic None Linear Quadratic
log likelihood (max) 797 891 932 821 913 951
WAIC —1,381 —1,511 —1,563 —1,404 —1,536 —1,587
LOOIC -1,370 —1,497 —1,548 -1,391 —1,524 -1,572
Note. For log likelihood, higher values indicate better fit. For WAIC and LOOIC, lower values indicate better fit.

weighting vector is plotted in Figure 3. As can
be seen from the figure, the shape of the weight-
ing vector on the group level is inversely U-
shaped, indicating that—on average—numbers
in the middle of the sequence received relatively
higher weights as compared to numbers at the
beginning or the end. The figure also reveals
noticeable individual differences. For many par-
ticipants, the weighting curve points downward,
indicating relatively higher weight for numbers
at the beginning of the sequence and hence a
primacy effect. A few participants also exhibit
an upward slope and hence a recency effect.
The quadratic weighting vector dovetails with

the observed patterns in Figure 2 showing that
U-shaped sequences were most likely to be un-
derestimated while peaked and decreasing se-
quences were estimated relatively accurately.

Field Study

To test if the compressive scaling observed in
the lab experiment generalizes to real-world
scenarios, I conducted a field study at a local
grocery store where customers who had lined up
at the checkout gave a spontaneous estimate of
the total value of their shopping basket. After
the checkout, this estimate was compared to the

w=1.06-0.05x s —0.08 x s
N
—~ <9 ]
5 —
<
=2
(0]
= 3
© |
o

Serial position (s)

Figure 3. Quadratic weighting vector in the “scaling first” model. The thick line indicates
the group-level estimate, the underlying gray area marks the 95% highest posterior density
interval, and the thin lines represent the estimates for each individual participant.
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actual value indicated on their sales receipt.
Besides testing for a possible estimation bias,
this design also aimed to compare the “scaling
first” against the “sum first” model, and it al-
lowed testing a possible influence of the under-
lying price distribution, the number and types of
items purchased, and the mode of payment. The
field study also provided an opportunity to test
possible influences of participants’ age. Re-
search on cognitive aging indicates that the abil-
ity to conduct simple arithmetic operations such
as addition declines with age due to a decrease
in cognitive resources such as working memory
or processing speed (Baltes & Baltes, 1990;
Gandini, Lemaire, & Dufau, 2008). While this
suggests an increase in estimation error with
age, elderly participants may also have had
more experience and thus opportunity for feed-
back in real-world environments such as gro-
cery stores, which might lead to more accurate
estimates.

When integrating prices, spontaneous, un-
planned purchases may be less likely to be
encoded and retrieved from memory (Baddeley,
1992). If so, shopping baskets that contain items
that are often purchased on impulse, such as
sweet and fatty snacks, could be more prone to
underestimation (Erdelyi & Goldberg, 2014).
Another indication of planned purchases is the
use of external memory aids such as shopping
lists (Block & Morwitz, 1999). Thus, customers
who use a shopping list might be more accurate
in estimating the total value of their baskets and
the number of items that they purchased.

Finally, underestimation might be less likely
for customers who pay cash and thus want to
avoid overspending. In line with this prediction,
customers who pay via credit or debit card seem
more prone to overspending, perhaps because
they underestimate or forget the total value of
their basket (Prelec & Simester, 2001).

Method

Data were collected on the sales floor of a
local grocery store during two sessions that
were one year apart. At each session, customers
with a shopping basket were approached by one
of two female research assistants. The first ses-
sion took place on three consecutive days
(Thursday to Saturday) from about 3:00 to 7:00
p-m. on Thursday and Friday and from 10:00
a.m. to 2:00 p.m. on Saturday. The second ses-

sion took place on a Friday (3:00 p.m. to 7:00
p-m.) and a Saturday (10:00 a.m. to 2:00 p.m.).
When standing in line before the checkout, par-
ticipants gave a spontaneous estimate of the
total value of their shopping basket. Participants
at the second session also estimated the total
number of items in their basket. The order of the
two questions was counterbalanced. Estimation
accuracy was not monetarily incentivized, but
participants seemed generally motivated and
engaged in the task. Participants at the second
session also indicated if they had used a shop-
ping list or not. At both sessions, all customers
who were approached agreed to participate in
the study. After checkout, customers exchanged
their sales receipt for a piece of chocolate or a
flower. During this transaction, a research as-
sistant noted participants’ gender and estimated
their age on a decade-scale (i.e., 20-30, 30—-40,
etc.). A total of 966 customers participated in
the study, 545 in the first session and 421 in the
second session. Fifty-eight percent of the par-
ticipants were female, and the mean estimated
age was 42 years (SD = 12).

Results

Across all customers, the average basket
value (calculated as the geometric mean to ac-
count for skewness in the data) was 50.6 CHF
(first session: 45 CHF; second session: 58.9
CHF). The respective median and arithmetic
mean values were 49.9 CHF and 63.79 CHF.
The interquartile range (i.e., the middle 50%)
was between 32.4 CHF and 79.1 CHF. The
(geometric) mean number of items within each
basket was 14.5 (first session: 14; second ses-
sion: 15.1). The respective median and arithme-
tic mean values were 14 and 16.8. The middle
50% of all baskets contained between 10 and 20
items. Accordingly, the (geometric) mean value
of a single item across all baskets was 2.7 CHF
(median = 2.9 CHF; arithmetic M = 3.8 CHF).

The median bias was —0.05 (interquartile
range = —0.19 to 0.13; M = —.02; Cohen’s
d = 0.2). In total, 60% of all baskets were
underestimated (first session: 62%; second ses-
sion: 57%), which was unlikely under the null
hypothesis of no bias as indicated by a binomial
test (p < .001; BF >10,000).

Estimating a regression on the (log) esti-
mated basket value with the (log) true value as
predictor yields an intercept of 1.44 and an
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exponent of 0.89, indicating that underestima-
tion got stronger for larger sums, while small
values were slightly overestimated. In particu-
lar, a 10% increase in the true basket value
yields only a 9% increase in the estimated val-
ue. In other words, a basket worth 51 CHF (the
average basket value) was underestimated by 3
CHEF or 8%, while a basket worth 79 CHF (the
upper 75% quantile) was underestimated by 8
CHF or 10%. Figure 4 illustrates this relation-
ship. The estimated curvilinear relationship is
quite similar for both sampling sessions (first
session: intercept = 1.36, exponent = 0.9; sec-
ond session: intercept = 1.7, exponent = 0.86),
and the compression is slightly more pro-
nounced compared to the laboratory experi-
ment.

To analyze possible factors that influence the
amount of underestimation, I estimated a step-
wise linear regression with bias as dependent
variable, similar to the lab experiment. The
analysis excluded 15 participants for whom age
was not recorded and another eight for whom
the mode of payment (cash or credit) was not

recorded. In a first step, a baseline model was
estimated with only the logarithm of the true
basket value as predictor. The fit of this baseline
model improved when participants’ age was
entered (BF = 297). As shown in Table 3, the
estimated beta coefficient was negative, indicat-
ing that older participants underestimated the
basket value more strongly. In particular, when
keeping basket value constant, underestimation
further decreased by 3% with every 10 years of
age.

Adding the actual number of items in the
basket as a predictor further improved model fit
(BF = 22), indicating that, when keeping basket
value and age constant, underestimation in-
creased for baskets that contained a few (rela-
tively expensive) as compared to many (rela-
tively inexpensive) items. Adding the mode of
payment (cash vs. credit) or properties of the
distribution of items, including its variance and
skewness, did not improve model fit further,
indicating that these variables did not influence
the bias.
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Figure 4. True basket value plotted against estimated basket value. The gray circles are
individual estimates. Circles below the diagonal (dashed line) indicate underestimation and
circles above overestimation. The circles drawn in black indicate the arithmetic mean of the
estimates across 10% percentiles. Error bars indicate the 95% confidence interval of these
means (bootstrapped). The estimated regression line is plotted in dark black. The plot does not

show 21 data points with values >200.
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Table 3
Regression Coefficients and Model Comparison for
the Field Study Data

Model
Predictors  Baseline 1 2 3
Fixed effects
Intercept —.02 41 5 .64
log(True sum) —.11 -.1 —-.16
Age —0.003  —0.0029
Number of items 0.0047
Model fit
BIC 246 179 168 161
log(Likelihood) —116 =79 =70 —64
Bayes factor
Model/Baseline —  >10,000 >10,000 >10,000
Model/Model 1 — 297 6,553
Model/Model 2 — 22

Note. To ensure that the model comparison was not af-
fected by differences in sample size, BIC, log(Likelihood),
and Bayes factors for all models were calculated after
excluding 21 participants for whom data on age (n = 15)
and/or mode of payment (n = 8) was missing.

In a next step, I estimated and compared the
scaling first and the sum first model using Stan.
The model implementation was similar to the
lab study except for two differences: First, in-
stead of a weighting vector, a simple propor-
tionality constant as in Equation 4 was esti-
mated because no reliable information was
available about the sequence in which the items
were purchased.5 Second, no hierarchical struc-
ture was implemented as each participant in the
field study only contributed one estimate. Like
in the lab study, preceding model recovery anal-
yses indicated that the data allowed distinguish-
ing both models across a wide range of possible
parameter values.

Results of the model estimates confirm that
the exponent was credibly smaller than one. In
contrast to the lab experiment however, Table 4
shows that model comparisons based on
LOOIC, WAIC, and (log) likelihood indicate
that the “sum first” model describes the field
data slightly better than the “scaling first” mod-
el. Thus, the observed underestimation in the
grocery store seemed to stem from a systematic
aggregation error rather than a compressive
scaling of single numbers.

One possible explanation for the observed
underestimation, which does not assume com-

pressive scaling of single numbers, would be
that people did not pay attention to the cent-
endings of the items they purchased, for exam-
ple, because they rounded prices down to the
nearest integer. In this case, underestimation
would be stronger for baskets that had a higher
proportion of items ending between .51 and .99
cents. However, entering this proportion as a
predictor into the regression analysis above did
not improve model fit, suggesting that underes-
timation was not due to a rounding-down strat-
egy.

At the second sampling session, 39% of all
participants stated that they used a shopping list.
The use of a shopping list had no influence on
the bias, however, suggesting that underestima-
tion was not driven by unplanned or impulse
purchases. In line with this, underestimation did
not increase if customers bought potential im-
pulse products such as sweets (40% of all bas-
kets contained at least one sweet item) or alco-
hol (30% of all baskets contained at least one
alcoholic beverage).

Another possible reason why people under-
estimated the value of their baskets is that they
did not remember all the items they had chosen.
However, on average, participants at the second
session overestimated the number of items in
their baskets by about 1.9 (SD = 7.57; Mdn =
—1), 1(420) = 5.1, p < .001; BF >10,000, and
only 35% of all participants underestimated the
number of items, rendering this explanation un-
likely.

General Discussion

Most participants in the laboratory experiment
and in the field study underestimated the true sum
of a sequence of numbers. This bias increased for
larger sums. These results align with previous
findings of similar patterns of underestimation
with respect to the perception of numerals in gen-
eral (Dehaene, 2011) and in a consumer context in
particular (van Ittersum et al., 2010). Which fac-
tors influenced people’s estimation bias?

3 Attempts to approximate the item order from its posi-
tion on the sales receipt confirmed the effects found in the
lab study, but analyses based on the position of items on the
sales floor led to inconclusive results. Therefore, possible
sequential order effects are not included in the model.
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Table 4
Quantitative Measures of Model Fit for the
Field Study

Model
Fit measures Sum first Scaling first
Log likelihood (max) —113.8 —117.4
WAIC 234.3 241.8
LOOIC 234.3 2419

Note. For log likelihood, higher values indicate better fit.
For WAIC and LOOIC, lower values indicate better fit.

Influence of Sequential Order

In the lab experiment, underestimation system-
atically depended on the sequential order in which
the numbers were presented. On the group level,
this dependency could be captured with an in-
versely U-shaped serial weighting curve. Under-
lying this average were many individual partici-
pants who showed a primacy effect. This primacy
effect dovetails with similar findings in the judg-
ment and decision making literature (Tversky &
Kahneman, 1974), and it corroborates previous
research showing that people’s accuracy in re-
membering items declines over the length of a
sequence (Hurlstone, Hitch, & Baddeley, 2014).
Results from the field study also show stronger
underestimation for elderly participants, suggest-
ing that number integration relies on cognitive
processes that decay with age (Baltes & Baltes,
1990).

However, the inversely U-shaped pattern on the
group level differs from previous findings based
on similar experimental designs that show recency
effects (e.g., Brezis et al., 2015; Tsetsos et al.,
2012). Research on memory suggests that better
recall for middle positions is not unheard of, but it
seems to be the exception rather than the rule (e.g.,
Jones & Oberauer, 2013). One possible explana-
tion for this difference could be that the observed
group-level pattern stems from averaging across
individual participants who showed either a pri-
macy or a recency effect. Alternatively, the dif-
ferent patterns could reflect qualitative differences
in the underlying cognitive processes for approx-
imating means and sums respectively. While from
an algebraic perspective, summing and averaging
are closely related calculations, this correspon-
dence may not necessarily hold for mental arith-
metic (Gigerenzer, 1991).

Sum First Versus Scaling First

Despite descriptively similar data patterns
across both studies, the model comparison ap-
proach reveals a qualitative difference in the un-
derlying cognitive processes. In the lab study, the
best explanation for the observed underestimation
was a compressed mental number line, while in
the field study, the bias seems to stem from a
systematic aggregation error. The latter result ac-
cords with the stronger underestimation for el-
derly participants, but it was not due to a simple
rounding strategy, an underestimation of the total
number of items, or systematically forgetting of
presumably unhealthy items such as sweet or fatty
snacks that are prone to unplanned impulse pur-
chases.

The difference between the lab and the field
study may also be due to qualitative differences in
the task itself. Compared to the field study, par-
ticipants in the lab were explicitly instructed to
estimate the sum prior to the task, got monetarily
incentivized, and also received feedback over
time, all of which may have triggered different,
presumably more conscious or strategic number
integration strategies. A further elucidation of the
underlying mechanisms awaits additional re-
search.

No Effect of Frequency Distributions

Across both studies, underestimation did not
depend on the underlying frequency distribution.
While this is surprising given the empirical and
theoretical support for such an influence outlined
in the introduction, the results are in line with
previous research that also did not find such a
relationship when information was presented se-
quentially (e.g., Hutchinson, Wilke, & Todd,
2008). Perhaps the differences in the higher mo-
ments of the observed distributions in the field and
in the laboratory experiment were not strong
enough to be noticed. As mentioned by Stewart
(2009), a possible effect also may have been over-
shadowed by participants’ past experiences with
price distributions on a daily basis.

Why Did People Underestimate?

The results at hand shed light on the question of
how people perceive and process numbers. Past
evidence for a compressive mental number line
mostly stems from experiments using nonsym-
bolic numerals such as clouds of dots (Dehaene,
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2007, 2009). In extension to this, the results from
the lab study indicate that compressive scaling
also holds for adult Western populations process-
ing Arabic numbers. These results align with re-
sults from Brezis et al. (2015) showing that par-
ticipants in an experiment slightly underestimated
the mean of a rapidly presented number sequence.
Presumably, this experimental setting inhibited
exact counting and adding and induced people to
rely on approximation and mathematical intuition.
The compressive scaling found for numbers
shares many properties with psychophysical func-
tions and thus may build on similar neural pro-
cesses (Nieder & Dehaene, 2009; Verguts & Fias,
2004).

In the field study, customers underestimated the
value of their baskets even though grocery shop-
ping is a common task that provides ample oppor-
tunity for feedback and learning, in particular if
national inflation rates are low, as was the case at
the time of the study in Switzerland. While this
finding matches with insights from psychophysics
indicating that subjective scales are often resistant
to training or experience (Stevens, 1957), the
model comparison revealed that the underestima-
tion was due to a systematic aggregation error
rather than a compressive mental number line.

What could be the reason for this error in the
field study? Past research indicates that people’s
estimates systematically depend on past experi-
ences in a given context (Stewart et al., 2006).
The study was conducted at the end of the week,
so if the grocery baskets that participants usu-
ally purchase are less expensive, they might
have corrected their estimate toward the long-
run average (see also Dehaene & Mehler, 1992).
While this explanation would also account for
the observed overestimation for small baskets, it
conflicts with the finding that most participants
overestimated the number of items they bought.
Thus, rigorously testing this hypothesis requires
knowledge of past shopping experiences in a
longitudinal design.

Implications for Related Theories

The present research further contributes to re-
cent theoretical work in economics and decision
making, where information about risky options is
sometimes presented sequentially in a decision
from experience paradigm (e.g. Hertwig, Barron,
Weber, & Erev, 2004; Zeigenfuse et al., 2014).
‘When choosing among gambles, people often ap-

pear risk averse, which can be captured through a
marginally decreasing utility function. In a choice
paradigm, it is difficult to disentangle perceptual
biases and idiosyncratic preferences, however.
Asking people to estimate the sum of a set of
numbers provides a more direct measure of the
subjective value of money that does not require
fitting highly parameterized models that can be
difficult to interpret (e.g. Scheibehenne & Pachur,
2015). In the present estimation task, where sub-
jective (risk) preferences did not come into play,
the results suggest that the curvature of the utility
function partly reflects perceptual, psychophysical
biases, or systematic errors when aggregating nu-
merals.

From an applied perspective, the results suggest
that estimation accuracy can be improved by sep-
arately integrating different parts of the number
sequence (such as different accounts or product
categories) and then adding these separate esti-
mates in a second step (see also Chandon &
Wansink, 2007). Likewise, the observed sequence
effect indicates that accuracy may increase when
expensive items are encountered early on.
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Appendix

Overview of the Presented Sequences

Uniform Positive skew Negative skew Unimodal Bimodal Baseline
(high kurtosis) (low kurtosis)

s TR D ol b |

Monotonically

Distribution

increasing

Monotonically

decreasing

Peaked
(inverse U-shape)

U-shaped

<>/
>0
<>/
<>/
e

Flat
(Baseline)

The baseline condition was characterized by a flat sequence and hence its frequency distribution
consisted of only a single peak.
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