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Many cognitive theories of judgement and decisionmaking assume that choice options are

evaluated relative to other available options. The extent to which the preference for one

option is influenced by other available options will often depend on how similar the

options are to each other, where similarity is assumed to be a decreasing function of the

distance between options. We examine how the distance between preferential options

that are described on multiple attributes can be determined. Previous distance functions

do not take into account that attributes differ in their subjective importance, are limited to

two attributes, or neglect the preferential relationship between the options. To measure

the distance between preferential options it is necessary to take the subjective

preferences of the decision maker into account. Accordingly, the multi-attribute space

that defines the relationship between options can be stretched or shrunk relative to the

attention or importance that a person gives to different attributes describing the options.

Here, we propose a generalized distance function for preferential choices that takes

subjective attribute importance into account and allows for individual differences

according to such subjective preferences. Using a hands-on example, we illustrate the

application of the function and compare it to previous distance measures. We conclude

with a discussion of the suitability and limitations of the proposed distance function.

1. Introduction

Past work has illustrated repeatedly that when people make choices, they do not evaluate

options independently, but rather evaluate options relative to each other (Huber, Payne,

&Puto, 1982; Rieskamp,Busemeyer,&Mellers, 2006; Simonson&Tversky, 1992; Slovic&

Tversky, 1974). One way to explain these interdependent evaluations is to assume

distance-dependent competition of options in themulti-attribute space (Roe, Busemeyer,

& Townsend, 2001; Rooderkerk, Van Heerde, & Bijmolt, 2011). Accordingly, options in

the multi-attribute space compete with each other based on their perceived similarity,

where similarity is defined as a decreasing function of their distance (Nosofsky, 1984;
Shepard, 1987). Themore similar two options are, themore strongly the evaluation of one

option will affect the evaluation of the other option. In the present paper, we propose a

generalized distance function (GDF) that defines the relationships between preferential

choice options in a multi-attribute space and takes a person’s subjective preferences into

account.
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Basel, Missionsstrasse 62a, 4055 Basel, Switzerland (email: nicolas.berkowitsch@unibas.ch).
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The psychological distance between options cannot be defined simply by the

Euclidean distance in the multi-attribute space, because this ignores the preferential

relationship between options and the importance that the decision maker gives to

different attributes. Figure 1 illustrates this difference for the hypothetical choice
between notebook computers. Figure 1a shows the options on the original attribute

space, while Figure 1b provides a visual impression of the psychological distances. In the

figure, the labelled dots A, B, and C represent three different notebooks described by their

processor speed and their battery life such that higher values are monotonically related to

desirability. Although the Euclidean distances between notebooks A and C and notebooks

A and B in the multi-attribute coordinate space are exactly the same, we argue that their

psychological distances differ. Notebooks A and B are highly competitive, as they both lie

on the indifference line, meaning that a change from notebook A to notebook B appears
acceptable, because the loss in battery life is compensated by notebook B’s higher

processor speed. In comparison, notebook C appears completely inferior to notebooks A

and B and a change fromnotebooks A or B to notebookC is not acceptable for the decision

maker, because this change would lead to a loss of battery life and a loss of processor

speed. In this example, notebook C is dominated by notebooks A and B. Consequently,

notebooks A and B are perceived as more similar to each other than either is to notebook

C, so that the psychological distance is smaller between A and B than between A and C (or

B and C).
One way to represent the psychological distance between the choice options is to

define a distance along the dominance line and the indifference line, as suggested by

Hotaling, Busemeyer, and Li (2010) and Huber et al. (1982). The two distances can be
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Figure 1. The (a) Euclidean distance and (b) psychological distance for the same set of notebook

computers, labelled A–C. (a) The two options B and C have the same Euclidean distance but not the

same psychological distance to option A. The psychological distance of option C to option A and

option B is relatively large, because option C is dominated by the other two options. A person giving

higher importance to the ‘battery life’ attribute as compared to the ‘processor speed’ attribute will

be indifferent only betweenoptionA andoptionB0 andnot betweenoptionA andoptionB, resulting

in a rotated indifference vector. (b) Thepsychological space is stretched in the dominance direction,

whereas distance in the indifference direction is the same as in (a).
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expressed by an indifference vector (dashed lines in Figure 1) and a dominance vector

(continuous lines in Figure 1). In addition, the psychological distance between options

also depends on the subjective importance given to the different attributes. A person

giving equal importance to the two attributes might be indifferent about notebooks A and
B. However, a person giving higher importance to the attribute ‘battery life’ as compared

to the attribute ‘processor speed’ will no longer be indifferent between notebooks A and

B, but will be indifferent between notebook A and a hypothetical notebook B0 that has a
slightly higher battery life than B (see Figure 1a).

This example illustrates that to be broadly applicable, a psychological distance

function needs to meet several requirements. It should capture the different preferential

relationships between options (i.e., whether one option is dominant or not); it must be

flexible enough to account for the varying importance of different attributes; and it should
be applicable for choice problems with more than two attributes. Past research on

distance functions has addressed some of these requirements (Hotaling et al., 2010;

Huber et al., 1982; Nosofsky, 1986; Rooderkerk et al., 2011; Wedell, 1991), but an

approach incorporating all requirements simultaneously is missing. Our goal in the

present paper is to provide a GDF for preferential choice options and to compare it to

alternative approaches. As a starting point, we review approaches that offer partial

solutions to the listed requirements. Based on these solutions, we develop a GDF fulfilling

all requirements simultaneously. We then illustrate the application of the GDF with a
concrete example. We conclude with a discussion of the suitability and limitations of the

proposed distance function and of possible ways to test the function empirically.

2. Psychological distance

Past researchers on perceptual categorization emphasized the difference between the
objective distance between objects and their psychological distance. For instance,

Nosofsky (1986) argued that individuals often do not distribute their attention equally to

each dimension describing (perceptual) objects, hence their psychological space differs.

To address this aspect, Nosofsky suggested a weighted Minkowski metric, which

stretches and shrinks the different dimensions relative to the attention that an individual

devotes to each dimension (Carroll &Wish, 1974).More attention to an attribute stretches

the dimension in the space, whereas less attention shrinks the dimension in the space.

This approach is common in categorization research (Nosofsky & Johansen, 2000;
Nosofsky & Zaki, 2002; Zaki, Nosofsky, Stanton, & Cohen, 2003).

To reach a better understanding of judgement and decision making, it is important to

take a slightly different perspective on the distance between options. That is because past

research indicated that the evaluation of choice options critically depends on the degree

to which an available option dominates another. For example, studies investigating the

attraction effect (Huber & Puto, 1983; Huber et al., 1982) report that the effect only

emerges when the dominated option is close enough to the dominating choice option

(Bhatia, 2013; Trueblood, Brown, & Heathcote, 2014; Tsetsos, Usher, & Chater, 2010).
Thus, to account for the attraction effect it is important to know not only whether an

option dominates another, but also to what extent this option is dominated.

To account for this dimension, Huber et al. (1982) advocated treating distance in the

dominance and indifference directions differently. They suggested that ‘dominated items

. . . are represented in the limit as being an infinite distance below those items that

dominate them’ (p. 92), whereas ‘distances among non-dominating pairs . . . must be
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finite’ (p. 92). In otherwords, theyproposedplacing a higherweight on the distance in the

dominance direction relative to the distance in the indifference direction. Figure 1

illustrates this idea. The distance between options A and B is the same in both graphs,

whereas the distance between options A and C is larger in Figure 1b than in Figure 1a,
because the psychological space is stretched in the dominance direction.

In his dimensional weight model Wedell (1991) built on this idea and suggested

rotating the indifference and dominance vectors to account for the preferential

relationship when a dominated option is added to the choice set. The very same logic

could be applied to account for varying levels of attribute importance. First, consider an

individual who weights equally the two attributes ‘processor speed’ and ‘battery life’ in

the notebook example. This can be expressed by choosing an indifference dimension and

a dominance dimension along the diagonals of the Cartesian coordinate plane (see the
solid indifference and dominance vectors iv and dv in Figure 2). Accordingly, an

individual who weights processor speed higher (lower) than battery life would be

depicted by a steeper (less steep) indifference vector. For illustration, these vectors are

labelled iv0 and iv″ in Figure 2. In the extreme case, where one attribute weight is

infinitely more important than the other attribute, the indifference vector would be

parallel to the axes of the coordinate plane.

In their preferential choice model, Rooderkerk et al. (2011) discussed an alternative

approach to account for individual differences. They suggested the indifference vector is
the same for all individuals, whereas the dominance vector (also called the preference

vector) is multiplied by an individual weight, yielding dominance vectors of different

lengths. The rotation approach (i.e., rotating the indifference vector) fromWedell (1991)
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Figure 2. Individual preferences in a two-attribute space illustrated by an individual indifference

vector and an orthogonal dominance vector. The solid indifference and dominance vectors indicate

a person who weights the two attributes ‘processor speed’ and ‘battery life’ equally, whereas the

dashed indifference and dominance vectors indicate a person giving a higher weight to either

processor speed (iv0 and dv0) or battery life (iv″ and dv″).
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has some advantages over Rooderkerk et al.’s (2011) suggestion of individual dominance

vectors: The indifference vector directly expresses howmany units an individual iswilling

to give up to increase the other attribute by one unit without introducing an additional

parameter to weight the dominance vector.
This overview of past research reveals that several approaches to distance functions

have addressed some of the aforementioned requirements, but none of them fulfil all

requirements simultaneously (see Table 1). In the following we outline a distance

function for preferential choice that does precisely that, and thus we refer to it as a GDF.

Wedescribe the function on a conceptual level and thenprovide themathematical details,

followed by a concrete example.

3. A generalized distance function

We continue with the notebook example with two attributes (processor speed and

battery life) before generalizing it to multiple attributes. As a first step we need to ensure

that the attributes are comparable with each other, to avoid distortions due to different

scales and ranges of attribute values. This can be achieved by standardizing the attribute

values, so that they have the same range, for example between 0 and 10. This additionally
increases the visual interpretability of the indifference vector. Next,wehave to specify the

directions and lengths of the indifference and dominance vectors. Because the dominance

vector is orthogonal to the indifference vector (Tversky, Sattah, & Slovic, 1988; Wedell,

1991), the direction of the dominance vector follows from the indifference vector. The

direction of the indifference vector can be determined by so-called ‘exchange ratios’,

which indicate how many units of one attribute an individual is willing to give up to

increase the other attribute by one unit. That is, the indifference vector contains

information about the exchange ratios between the attributes. For options described by
more than two attributes, the number of possible exchange ratios increases. These

multiple exchange ratios can be captured by multiple indifference vectors forming an

indifference plane.

Forexample,allpossibleexchangeratiosofanoptiondescribedbyfiveattributescanbe

capturedwith four exchange ratios, resulting in four indifferencevectors–One fewer than

the number of attributes (for details, see Section 4). Whereas the number of indifference

vectors depends on the number of attributes, the number of distance types remains

constant: Options are still described by distance in the indifference direction and by
distance in thedominancedirection.Anoptioneitherdominates anotheroptionor itdoes

not, which means that there is still only a single dominance vector even if options are

describedonseveral attributes.As aconsequence, a singleparameter is sufficient toweight

distance in the dominance direction more strongly than in the indifference direction.

As is the case for two attributes (i.e., one indifference vector), the dominance vector

has to be orthogonal to all indifference vectors in the multi-attribute case. Because of this

property, the dominance vector can be derived from the indifference vectors (see

Section 4 for details). To obtain indifference vectors and a dominance vector of equal
lengths,we simply normalize them to the Euclidean length of 1, by dividing each vector by

its Euclidean length.

Next, we express the distance between two options by means of the distance in the

indifference and dominance direction. The line connecting the two options is called the

distance vector, represented in the standard attribute coordinate plane. Instead of using

these attribute dimensions, we now express the distance vector in terms of the

Distance function for preferential choices 5
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indifference vectors and the dominance vector. This is achieved by a change of basis. The

transformed distance vector indicates how many units of the standardized indifference

vectors and of the standardized dominance vector are necessary to ‘travel’ from one to

another option.
Finally, we calculate the Euclidean length of the transformed distance vector and

multiply distance in the dominance direction by a parameter greater than 1. If this

parameter is set to 1, the resulting distance equals the Euclidean distance of the

unweighted distance vector and hence dominance would not be considered.

4. Mathematical formalization of the generalized distance function

To specify the GDF, we first rescale the attribute values (vold) of the n attributes to equal

ranges, from minnew to maxnew, according to

vnew ¼ minnew þ ðvold �minoldÞðmaxnew �minnewÞ
maxold �minold

; ð1Þ

whereminold refers to the theoreticalminimumvalue of the old attribute range andmaxold
refers to the theoretical maximum value of the old attribute range. Next, we define an

importance weight vector W that contains the individual importance weights for the n

attributes and scale theweights such that they sum to 1. The number of possible exchange

ratios is then given by

nExchRat ¼ nðn� 1Þ
2

; ð2Þ

where n is the number of attributes. A strategy to reduce the nExchRat needed without loss

of information is to compare each attribute against an arbitrary attribute, for example,

against the first attribute. Therefore, each indifference vector fivjgn�1
j¼1 is ann-dimensional

vector and can be calculated as

ivj ¼

� wjþ1

w1

0

..

.

0
w1

w1

0

..

.

0

2
666666666664

3
777777777775
¼

� wjþ1

w1

0

..

.

0

1

0

..

.

0

2
666666666664

3
777777777775
; for all j ¼ 1; . . .;n� 1; ð3Þ

where w1/w1 (=1) is at the (j + 1)th position.

Notice that this leads to n � 1 indifference vectors. Independent of the number of

attributes, each ivj has exactly two non-zero entries, the exchange ratios. This is because

the othernExchRat can be recovered from the entries of then � 1 indifference vectors. The

first entry in each ivjmarks the exchange ratio between the (j + 1)th and the first attribute

and the algebraic sign indicates that the vector is pointing toward the axes of the (j + 1)th
attribute. In other words, ivj reveals how many units of the (j + 1)th attribute are gained

for giving up on one unit of the first attribute.

Distance function for preferential choices 7



Because the n-dimensional dominance vector dv should be orthogonal to all n � 1

indifference vectors,we determine the case inwhich the dot product of each indifference

vector with dv is zero. In general, this vector fulfils

ivj � dv ¼ 0; for all j ¼ 1; . . .;n� 1; ð4Þ
which leads to the generalized form

dv ¼

w1

w1
w2

w1

..

.

wj

w1

..

.

wn

w1

2
6666666664

3
7777777775
: ð5Þ

Now we can construct the n 9 n matrix B*, containing the n � 1 indifference vectors

iv1, . . ., ivn � 1 and the dominance vector dv. This is

B� ¼ ½iv1; . . .; ivj; . . .; ivn�1;dv�: ð6Þ
Observe that B* is a basis of the attribute space. To standardize the lengths of the

indifference vectors and the dominance vector to 1, each vector is divided by its Euclidean

lengths liv and ldv, where livj

� �n�1

j¼1

livj
¼ kivjk2; for all j ¼ 1; . . .;n� 1; ð7Þ

and

ldv ¼ kdvk2: ð8Þ
Thus, we obtain the basis B, which is

B ¼ iv1

liv1

; . . .;
ivj

livj

; . . .;
ivn�1

livn�1

;
dv

ldv

" #
: ð9Þ

B contains the standardized indifference vectors and the standardized dominance vector.

Next, we define the distance of the position of options (i.e., A, B, or C) in the Cartesian

coordinate system on the standardized scale (e.g., 0–10 in the example below) as a vector

labelleddiststand.Wewant to transform this distance vector that connects the twooptions

into the new distance vector disttrans that expresses the trajectory path created by the

previously introduced indifference vectors and by the dominance vector. This is achieved
by a change of basis. Therefore we multiply the inverse of the basis B by diststand:

disttrans ¼ B�1 � diststand: ð10Þ

The firstn � 1 entries ofdisttrans express the distance in units of each ivj, whereas the last
entry of disttrans expresses the distance in units of dv. Now we need to calculate the

Euclidean lengthD2 of disttrans and multiply the distance in the dominance direction by a

8 Nicolas A. J. Berkowitsch et al.



parameterwd > 1. This ensures that the distance in the dominance direction is weighted

more strongly than thedistance in the indifferencedirections. This is computed as follows:

D2 ¼ dist0trans � A � disttrans ð11Þ

where A is an n 9 n diagonal matrix and is constructed in the following way:

Aj;j ¼ 1 if j ¼ 1; . . .;n� 1,

wd if j ¼ n.

�
ð12Þ

This ensures that only the difference in dominance direction, the last column of disttrans,
is weighted by wd. By setting A to the identity matrix (i.e., wd = 1), one obtains the

standard Euclidean norm.
The steps required to derive the GDF can be summarized as follows:

1. Standardize all attribute values to the same range (e.g., between 0 and 10) using the

theoretical possible range of attribute values.

2. Determine the weights W to calculate the matrix B*, containing the n � 1

indifference vectors and the dominance vector.

3. Normalize the indifference vectors and the dominance vector in B* to the Euclidean

length of 1 to obtain B.
4. Express the distance vector diststand in terms of the introduced basis B to get the

transformed distance vector disttrans.
5. To obtainD2, determine the Euclidean length ofdisttrans and place a higherweight on

distance in the dominance direction relative to the indifference direction.

Defined in that way, the GDF has n � 1 free parameters for the attribute importance

weights and one additional free wd parameter for the weighting of the dominance

direction relative to the indifference direction. As shown in Table 1, this number is

comparable to existing distance functions. Table 1 further indicates which of the existing

distance functions are nested within the GDF that we propose. For instance, in a situation
where the choice options are described on only two attributes and the attribute weights

are assumed to be equal, the GDF resembles the function suggested by Hotaling et al.

(2010). Likewise, for a choice situation with two attributes, Rooderkerk et al. (2011)

estimate theweights of one attribute (while fixing the other to 1) and they do not include a

stretching parameter (i.e., wd is fixed to 1).

In the next section,weprovide an example inwhichwe apply theGDF to calculate the

distances between three notebooks, each described by three attributes, and compare the

distances obtained to previous distance functions.

5. Example

As an example, imagine you want to buy a new notebook computer to conduct your

research. The notebook should be fast enough to run your simulations smoothly, and the

battery life should cover your daily commuting time by train. During your internet search,
you came across notebookswith processors up to 5 GHz andbatteries that last for 6 h, and

you excluded notebooks with display sizes larger than 30 in. Table 2 shows the three

notebooks you ended up with.

Let us further assume that you care about having a high processor speed (PS) as much

as a longbattery life (BL) and that you care less about having a large display size (DS). These

Distance function for preferential choices 9



preferences can be expressed by the following subjective importance weights:wPS = .4,

wBL = .4, andwDS = .2. Therefore, you clearly prefer notebooks A and B over notebook C

because they dominate notebook C. The choice between notebooks A and B seems to be
more difficult. Going back and forth between the two notebooks, you realize that both

have some advantages and disadvantages and you deem them equally attractive. That is,

you are indifferent between notebooks A and B. Because notebook A dominates notebook

C and competes with notebook B, the perceived distance between notebooks A and C

should be larger than between notebooks A and B. However, if we determined the

standard Euclidean distance in the rescaled attribute space, the two distances would be

the same, as illustrated below.

To apply the GDF to the notebook example, we start by standardizing the ranges of all
three attributes (n = 3) to equal ranges, for instance, between 0 and 10 according to

equation (1). Now, the notebooks can be represented as points in a multi-attribute space

with notebook A = (5, 4, 3), notebook B = (3, 5, 5), and notebook C = (3, 2, 2). Next, we

determine the basisB* containing the two indifference vectors and the dominance vector.

The first indifference vector iv1 is given by

iv1 ¼
� wBL

wPS

1

0

2
4

3
5 ¼

�1
1

0

2
4

3
5;

the second indifference vector iv2 is given by

iv2 ¼
� wDS

wPS

0
1

2
4

3
5 ¼

�:5
0
1

2
4

3
5;

and the dominance vector dv is given by

dv ¼
1
wBL

wPS
wDS

wPS

2
4

3
5 ¼

1

1
:5

2
4

3
5:

This leads to the basis

B� ¼
�1 �:5 1
1 0 1

0 1 :5

2
4

3
5:

Next, we normalize the indifference vectors and the dominance vector to the length of 1

by dividing them by their Euclidean lengths, where

Table 2. Attribute values of three different notebook computers

Attribute Notebook A Notebook B Notebook C

Processor speed in gigahertz [1–5]a 3.0 2.2 2.2

Battery life in hours [2–6] 3.6 4.0 2.8

Display size in inches [4–30] 11.8 17.0 9.2

Note. aThe numbers in brackets indicate the possible value range.

10 Nicolas A. J. Berkowitsch et al.



liv1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1Þ2 þ 12 þ 0

q
¼

ffiffiffi
2

p
;

liv2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�:5Þ2 þ 0þ 12

q
¼ ffiffiffiffiffiffiffiffiffi

1:25
p

;

and

ldv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 12 þ :52

p
¼ ffiffiffiffiffiffiffiffiffi

2:25
p

:

Then the standardized basis is

B ¼
�1ffiffi
2

p �:5ffiffiffiffiffiffiffi
1:25

p 1ffiffiffiffiffiffiffi
2:25

p
1ffiffi
2

p 0 1ffiffiffiffiffiffiffi
2:25

p

0 1ffiffiffiffiffiffiffi
1:25

p :5ffiffiffiffiffiffiffi
2:25

p

2
64

3
75:

To express the distance vector diststand between the notebooks in terms of the

indifference vector and the dominance vector, we next make a change of basis. The

standarddistance vectors betweennotebooksA andCandbetweennotebooksA andB are

diststandAC ¼
2

2

1

2
4

3
5

and

diststandAB ¼
2

�1

�2

2
4

3
5:

To yield the transformed distance vector we apply equation (10), so that

disttransAC ¼
�1ffiffi
2

p �:5ffiffiffiffiffiffiffi
1:25

p 1ffiffiffiffiffiffiffi
2:25

p
1ffiffi
2

p 0 1ffiffiffiffiffiffiffi
2:25

p

0 1ffiffiffiffiffiffiffi
1:25

p :5ffiffiffiffiffiffiffi
2:25

p

2
64

3
75
�1

�
2
2

1

2
4

3
5 ¼

0
0

3

2
4

3
5

and

disttransAB ¼
�1ffiffi
2

p �:5ffiffiffiffiffiffiffi
1:25

p 1ffiffiffiffiffiffiffi
2:25

p
1ffiffi
2

p 0 1ffiffiffiffiffiffiffi
2:25

p

0 1ffiffiffiffiffiffiffi
1:25

p :5ffiffiffiffiffiffiffi
2:25

p

2
64

3
75
�1

�
2

�1

�2

2
4

3
5 ¼

� ffiffiffi
2

p
� ffiffiffi

5
p
0

2
4

3
5:

The distance disttransAC indicates that to reach point A from point C, we need to move

three units along the dominance vector and none along the two indifference vectors. To

reach point A from point B, we need to move by � ffiffiffi
2

p
and � ffiffiffi

5
p

units along the first and

second indifference vectors, and no units in the dominance direction, which means that

we are moving on the indifference plane.

Distance function for preferential choices 11



By settingwd = 10, we assume that distance in the dominance direction is perceived

10 times more strongly than in the indifference direction, resulting in

A ¼
1 0 0

0 1 0

0 0 10

2
4

3
5:

Finally,we can calculate the Euclidean distancesD2
AC betweenoptions A andC andD2

AB

between options A and B by applying equation (11). We obtainD2
AC ¼ 90 and D2

AB ¼ 7.

If we had treated distances in the indifference and dominance directions equally (i.e., by

settingwd to 1), the distance betweenoptions A andCwould have decreased toD2
AC ¼ 9,

whereas D2
AB would have remained 7, thus suggesting that options B and C have similar

distances to option A. Note that if we had also ignored the weights given to the attributes

and had determined the Euclidean distance in the standardized attribute space, both

notebook C and notebook B would have had the same distance to notebook A of

D2
AC Eucl ¼ 9ð¼ 22 þ 22 þ 12Þ and D2

AB Eucl ¼ 9ð¼ 22 þ ð�1Þ2 þ ð�2Þ2Þ, incorrectly
suggesting that notebooks A and C are perceived as being as similar to each other, as

notebooks A and B are to each other.

6. Discussion

People often evaluate options relative to each other (Huber et al., 1982; Rieskamp et al.,

2006; Simonson & Tversky, 1992; Slovic & Tversky, 1974). Therefore, many cognitive

models of decision making take the similarity between options into account (Roe et al.,

2001; Rooderkerk et al., 2011). The similarity between options is generally expressed as a

decreasing function of their distance to eachother (Shepard, 1987). To define the distance
between options for preferential decision-making problems, past research has addressed

important aspects such as the different preferential relationships between options, the

varying subjective importance of different attributes, and the applicability to choice

problems with more than two attributes. However, as shown in Table 1, thus far no

approach has addressed all of these aspects simultaneously (cf. Hotaling et al., 2010;

Huber et al., 1982; Nosofsky, 1986; Rooderkerk et al., 2011;Wedell, 1991). To overcome

this limitation, we have developed a new GDF for preferential choices that distinguishes

the preferential relationship between options in a multi-attribute space, assigns different
weights depending on the type of distance, and accounts for the individual degree of

importance of different attributes. In the following, we will further discuss important

prerequisites and underlying theoretical assumptions of the proposed distance function.

One important prerequisite is the precisemeasurement of subjective attributeweights

that the function takes as input. To obtain these weights, past research on judgement and

decision making has proposed several approaches. One approach is to elicit people’s

subjective attributeweights bymeans of establishedmethods from decision analysis (for a

review, see Riabacke,Danielson, &Ekenberg, 2012). For example, according to the ‘trade-
off procedure’ participants are asked to create indifferent choice pairs from which the

weights are derived following multi-attribute value theory (Keeney & Raiffa, 1976). As an

alternative approach, people’s subjective attribute weights can also be estimated

indirectly based on repeated choices between multiple choice options by means of a

modelling approach. By using choice models that incorporate the attribute weight as free

parameters (Roe et al., 2001), researchers can estimate the weights using maximum
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likelihood methods (Lewandowsky & Farrell, 2011). This second approach can also be

applied when the weights are estimated based on discrete choices. When presenting

similar choices repeatedly, this approach can also be used to assess the reliability of the

measures obtained. Choice data also provide the basis for many mathematical decision
models that take the distance between alternative options into account, and thus can be

easily extended with the GDF. This includes the multi-alternative decision field theory

(Roe et al., 2001), the leaky competing accumulator model (Usher & McClelland, 2001)

and the extended contextual random utility model (Rooderkerk et al., 2011) that all rely

on quantitative information about the distances between available options. For a concrete

implementation of this approach and its application to empirical choice data, see

Berkowitsch, Scheibehenne, and Rieskamp (2014).

For choice models that require information about the options’ similarity, researchers
also need to define the relationship between similarity and distance, for example by

assuming that similarity is a decreasing (exponential) function of the distance. In addition

to this, for randomutilitymodels (McFadden, 2001),which are frequently applied inmany

areas of research in judgement and decisionmaking and economics, one could replace the

individual parameters in the variance–covariancematrixwith the GDF. Implementing the

GDF in the models mentioned above also allows researchers to empirically estimate the

parameterwdwhich weights the distance in dominance directionmore strongly than the

distance in the indifference directions.
The GDF that we outlined further assumes that people’s subjective importance or

weighting of one attribute relative to another attribute can be expressed by exchange

ratios. Towards a precise understanding of this weighting, it is important to estimate the

underlying attribute weights reliably. However, inaccurate exchange ratios cannot turn a

dominated choice option into a dominating option. This is because in the extreme case,

where one attribute weight is wrongly estimated as infinitely more important than the

other attribute(s), the formerly decreasing indifference vector would change into an

indifference vector parallel to the standard unit vector, but cannot change into an
increasing indifference vector.

The assumption of linear exchange ratios further implies that a disadvantage on one

unit for one attribute can always be compensated for by a specific number of units of an

advantage on the other attribute. This assumption might sometimes be violated when

people make decisions. For instance, a decision maker might require a minimum battery

life for her new notebook. In this case, she would do better to apply nonlinear exchange

ratios. Here, for instance, the closer a value of an attribute gets to a decision maker’s

requiredminimum value (e.g., minimum hours of battery life), themore units of the other
attributes are required to compensate a further decrease of the first attribute. In the

extreme, the exchange ratio becomes indefinitely small or big, which can be captured by

asymptotic indifference curves. This idea is supported by findings from Chernev (2004).

He suggested that due to people’s extremeness aversion, they prefer options that are

closer to the so-called ‘attribute-balance line,’ which he defined as the line connecting ‘all

potential options with identical values on both attributes’ (p. 251). This can be captured

by a convex indifference curve. However, for simplicity we have applied linear exchange

ratios to express the importance of different attributes. This approach should be suitable
as long as the attribute range does not include very extreme values. It remains to be tested

under what circumstances nonlinear exchange ratios lead to a substantial advantage in

describing the psychological distance for multi-attribute options in preferential decision

making and ultimately to better prediction of preferential choices.
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When normalizing the indifference vectors and the dominance vector to equal lengths

of 1, and later when we calculated the length of the transformed distance vectors, we

assumed the 2-norm distance (i.e., the Euclidean distance). Although the 2-norm distance

is widely applied for preferential choices (Hotaling et al., 2010; Rooderkerk et al., 2011),
the 1-norm (i.e., the city block) distance is frequently applied in categorization research

for stimuli with highly separable dimensions (Nosofsky & Zaki, 2002). For example, one

hypothesis following from this is that with an increasing number of attributes describing a

preferential choice option, the dimensions become less separable and the 2-norm

distance can outperform the 1-norm. This can also be tested – similarly to the Minkowski

rmetric – by introducing the norm as a free parameter r to see whether the 1-norm (i.e.,

r = 1) or the 2-norm (i.e., r = 2) leads to more accurate predictions of preferential

choices.
The approach we have taken to define a GDF shares some aspects with the

multidimensional scaling approach (MDS; Kruskal, 1964a,b). MDS is often applied in

research on judgement and decisionmaking to optimally visualize the perceived similarity

between options in the attribute space (for a review, see Carroll &Arabie, 1980).MDS also

allows the definition of a new attribute space to express the similarities between options.

However, in contrast to MDS, our approach takes the specific preferential relationship

between options into account, and it can be readily applied to mathematical models of

perception and decision making for single individuals (e.g., Berkowitsch et al., 2014).
Besides fulfilling its general purpose of measuring the perceived distance between

preferential choice options, the GDF is particularly useful for studying so-called context

effects (Huber & Puto, 1983; Huber et al., 1982; Simonson & Tversky, 1992; Slovic &

Tversky, 1974). Context effects refer to choice situations in which preferential choice

options are evaluated relative to each other. According to the similarity effect – a well-

known context effect – similar choice options compete with each other more strongly

than dissimilar options. Therefore adding an option that is similar to one but dissimilar to

another option increases the preference for the dissimilar relative to the similar option
(Tversky, 1972a,b). To better understand the similarity effect, it is therefore important to

determine how the similarity or dissimilarity between two options is perceived. Whereas

for one person two given options might be perceived as similar, for another person one of

the two options might dominate the other. This can be captured by the GDF that we

proposed, because it accounts for individual differences and distinguishes the preferential

relationship between options.

Research on context effects has focused mainly on options described by two

attributes. With an increasing number of attributes, it becomes harder to tell dominated
options apart from indifferent options. Because the GDF allows for multi-attribute

options, it can be applied to examine context effects in the multi-attribute space.

Furthermore, the GDF can be fruitfully applied to research on individual differences,

because it allows the indifference vectors to rotate through the multi-attribute space and

hence quantifies individuals’ exchange ratios between the attributes. This property also

lends itself to a combination with existing choice models that try to estimate the

subjective importance that people give to different attributes.

Incorporating the function into amathematical choicemodel also provides the basis to
empirically test and compare the function relative to alternative approaches in terms of

predictive accuracy and complexity (Forster, 2000). Although providing such an

empirical test was not the goal of the present theoretical paper, it would be an important

next step to better understand how people perceive the similarity and distance between

options that are often evaluated relative to each other.

14 Nicolas A. J. Berkowitsch et al.



In summary, the GDF that we have proposed accounts for several requirements that

previous approaches have only addressed in isolation. This allows researchers to study

preferential choices and context effects in more depth and to investigate individual

differences in the multi-attribute space. Ultimately, this should lead to advancement of
decision theory by taking the similarity between choice options into account for

providing better explanations and predictions of human preferential choices.
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